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Journal of Ecology (1991), 79, 1123-1135 

A DIFFUSION MODEL FOR DISPERSAL 
OF OPUNTIA IMBRICATA (CHOLLA) ON 

RANGELAND 

L. J. S. ALLEN,* E. J. ALLEN,* C. R. G. KUNSTt AND 

R. E. SOSEBEEt 
*Department of Mathematics and tDepartment of Range and Wildlife Management, 

Texas Tech University, Lubbock, Texas 79409, U.S.A. 

SUMMARY 

(1) The dispersal of Opuntia imbricata (cholla) on rangeland may be directly or 
indirectly affected by the presence of livestock and wildlife. Overgrazing creates 
gaps or open spaces for seeds or stems that fall to the ground to become established 
(passive dispersal). In addition, livestock or wildlife may cause stems and fruits to 
fall to the ground (active dispersal). 

(2) A theoretical model is formulated for the dispersal of plants based on the 
diffusion equation which assumes one or more mechanisms of dispersal (e.g. passive 
and active dispersal). The x2 goodness-of-fit test is used to determine whether the 
data may be explained by one or by two mechanisms of dispersal. Methods for 
estimating the model parameters are presented based on the x2 method and the 
method of moments. 

(3) The model and analytical techniques are applied to field data on the spatial 
distribution of Opuntia imbricata in four different pastures. 

(4) The results indicate that dispersal of cholla can be attributed to two dispersal 
mechanisms. Passive dispersal alone cannot account for the current spread of cholla 
on some of the pastures. 

INTRODUCTION 

Opuntia imbricata (Haw) D. C., commonly called cholla or walkingstick cholla, is 
a native cactus in Texas and New Mexico. Usually the species is present in low 
frequencies on rangeland. However, for reasons not well understood, 0. imbricata 
can dramatically increase its density and act as a range weed, interfering with live- 
stock grazing and handling (Kunst 1988). 0. imbricata reproduces from seeds and 
from detached stems or joints (Kunst 1988, 1990), with asexual reproduction rep- 
resenting the dominant method by which the species spreads in rangelands (Brown 
1950; Glendening 1952; Humphrey & Mehikoff 1958; Pieper, Rea & Fraser 1974). 
Livestock and wildlife may play a dual role in the dispersal of cholla. Overgrazing 
creates open spaces in the herbaceous vegetation in which detached stems (Joints) 
may establish new plants (passive dispersal). The availability of gaps is assumed 
to be a key factor in the success of cholla invasion (Pieper, Rea & Fraser 1974). 
Animals may also cause joints to fall to the ground (Humphrey & Mehikoff 1958; 
Laycock & Mihlbacher 1987). In addition, animals may help the dispersal by trans- 
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1124 Model for dispersal of Opuntia imbricata 

porting stems (e.g. joints may become lodged on their body and drop off later) or 
by ingesting the fruits and depositing the seeds through defecation (active dispersal). 

There are two important variables in the dispersal of cholla which have implications 
for range management: the rate of dispersal and the density eventually attained by 
the species. If either one of these variables is low, cholla can be easily controlled or 
poses no serious range problem. Therefore, it is useful to be able to estimate these 
variables for various range conditions. The density eventually attained by cholla is 
easily estimated, but the rate at which cholla disperses is much more difficult to 
assess. Assuming that dispersal of cholla can be modelled by a diffusion process 
(discussed in the next section), then this dispersal can be quantified by estimating 
diffusion coefficients. As mentioned above, however, more than one type of dispersal 
mechanism may be present, and a simple diffusion process with a single diffusion 
coefficient may be inadequate to explain or predict the rate of spread of cholla. In 
this paper, the dispersal of cholla by diffusion is generalized to take into account 
more than one dispersal mechanism. After the formulation of a theoretical disper- 
sal model, a method is presented to test if empirical data can be explained by one 
or more mechanisms of dispersal, assuming that the dispersal is by diffusion. The 
model and techniques are applied to four pastures in Texas and New Mexico with 
cholla infestations. 

MODEL FORMULATION 

The diffusion equation provides a theoretical framework for determining the spatial 
distribution of plants away from a source. Skellam (1951) was one of the first to use 
it to model the spatial spread of a population and to apply it to particular plant and 
animal populations. Andow et al. (1990) applied the diffusion equation to three 
introduced species (Ondatra zibethica (muskrat), Oulema melanopus (cereal leaf 
beetle) and Pieris rapae (small cabbage white butterfly)) to estimate their asymptotic 
rate of spread. The diffusion equation has served as a useful starting point for many 
models of population dispersal or spread (e.g. Okubo 1980; Liddle, Parlange & 
Bulow-Olsen 1987; Banks, Kareiva & Zia 1988; Edelstein-Keshet 1988; Hengeveld 
1988, 1989; Moody & Mack 1988; Murray 1989; Okubo & Levin 1989). 

For our purposes, mechanisms of dispersal can be divided into two categories: 
active and passive. Okubo (1980) defines 'active diffusion' as the diffusion of objects, 
primarily animals, which perform motion by themselves and 'passive diffusion' as 
the diffusion of objects that are not capable of performing random motion without 
the help of environmental turbulence. The term 'passive diffusion' or 'passive dis- 
persal' will be used here in the same sense for dispersal of seeds, stems or fruits that 
fall to the ground and are not transported by animals. The term 'active diffusion' or 
'active dispersal' will be used when transport of the seeds, stems or fruits may be 
attributed to animals. The actual movements of animals in the dispersal of a plant 
away from a source will not be considered, only the consequences of that movement. 
Active dispersal may play a more significant role than passive dispersal in rangeland 
conditions due to the presence of cattle. 

The spatial distribution of plants away from ,a source depends on a multitude of 
factors (intrinsic and extrinsic) which affect the dispersal of disseminules and their 
germination success. As noted by Harper (1977, p. 112), it is almost impossible after 
seedling growth to discover what were the direct causes of density, pattern and 
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composition of a plant population. More-detailed models must account for each 
part of the dispersal process over much smaller time scales (e.g. seed dispersal; 
Liddle, Parlange & Bulow-Olsen 1987; Okubo & Levin 1989) and these individual 
factors must be determined via detailed quantitative investigations into distribution, 
emergence and mortality of seedlings (e.g. Friedman & Orshan 1975). We consider 
the total impact of these factors on the dispersal process, and make the assumption 
that the contributing factors may be grouped into one or more mechanisms of dis- 
persal (e.g. active and passive dispersal) and then test this assumption. 

Differing dispersal mechanisms have been used to explain species invasions and 
their subsequent spread. Although the mechanisms are defined differently, Hengeveld 
(1988, 1989) showed that two different dispersal mechanisms may be responsible for 
the invasion of Streptopelia decaocto (collared dove) into Europe. According to 
Hengeveld (1988), the biota arising from species or individuals having different dis- 
persal mechanisms with specific efficiencies may be the rule rather than the exception. 

We begin with a simplistic model, based on the diffusion equation, in which 
factors influencing the spatial pattern are grouped into a single parameter, the 
diffusion coefficient. An initial value problem can be formulated for S(x,y,t), the 
probability density distribution for the number of plants per unit area at position 
(x,y) and time t. The governing differential equation for the dispersal of these plants 
is given by the diffusion equation: 

- = Kta2 + -y2 

with the corresponding initial condition, 

S(x,y,O) = 6(x) 6(y), 

where K is the diffusion coefficient and 6 is the Dirac delta function. The initial 
condition is a point source which represents an isolated parent plant at which all of 
the disseminules are located (with probability one). We consider only the diffusion 
process and not the growth of the population, because the model is applied to the 
dispersal of second-generation plants which arise from a parent plant (point source) 
and not successive generations which arise from these plants. 

The solution to the above system is well known (Pielou 1977) and is given by 

1 /X2 +y2 
S(x,y,t) = exp i-K. 

4jrKt \2Kt/ 

If we let D = 4Kt, where t is a sufficiently long time period during which the plants 
become established, and consider S in terms of polar coordinates, r and 0, then the 
distribution for S becomes 

S(r,0,D) = 
jTD 

As S(r,O,D) is independent of 0, the probability density distribution can be written 
as a function of distance r from the source (parent plant) as follows (Pielou 1977): 

2r 
rIID f(r, D) = 22rrS (r, 0, D) - er2D 1 

D 
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1126 Model for dispersal of Opuntia imbricata 

where f is the probability density distribution of plants per unit distance. (Note that 
f has the form of a particular exponential distribution, i.e. Rayleigh distribution.) 
In other words, f is the probability of finding offspring plants per unit distance from 
the source or parent plant. The above distribution has mean, r = /2(T)12,mode, 
rm = (D12) ,and variance, or2 = D(1 - -). We shall refer to D, rather than to K, as 
the diffusion coefficient in the following analysis. The units of D are the square of 
distance. 

If dispersal is primarily due to one mechanism, for example either passive or 
active dispersal, then we should expect the data to fit an equation of the form (1), 
a unimodal distribution. However, if the observed distribution is bimodal, there are 
probably at least two methods of dispersal which significantly affect the form of the 
distribution. In this case, a proportion, pl, of the distribution of plants is due to one 
method and the remaining proportion, P2, is due to a second method (P1 + P2= 1). 
Therefore, a distribution of the following form is appropriate: 

F(r,p1,p2,D1,D2) = p1f(r,Dl) + p2f(r,D2), (2) 

where F is the probability density distribution of plants per unit distance. The dis- 
tributionsf(r,D1) and f(r,D2), given by eqn 1, are the probability density distributions 
for each method of dispersal with diffusion coefficients D1 and D2, respectively. 
We assume D I D2; therefore, the first method of dispersal (e.g. passive dispersal) 
locates plants closer to the source than the second method (e.g. active dispersal). 
Obviously, if D1 = D2= D, eqn 2 is the same as eqn 1. Although not considered in 
the remainder of this paper, more than two methods of dispersal could be considered. 
Clearly, eqn 2 can be generalized to n methods of dispersal, and if Di = D, then the 
model reduces to eqn 1. However, as n goes to infinity, the form of the distribution 
F is hard to predict unless relations between the parameters pi and Di are known. 

It is important to remember that the basic underlying assumption is that disper- 
sal is by a random diffusion process and it is this assumption which provides the 
motivation for using eqns 1 or 2 (rather than some other distribution) in the fol- 
lowing analysis. 

The distribution given in eqn 2 is a finite mixture distribution with known com- 
ponent distribution function f, but where the mixing weights or proportions, p, and 
P2, and the component parameters, D1 and D2, are unknown (Titterington, Smith 
& Makov 1985). In the following section we use a minimum distance estimation 
procedure based on the x2 distance measure (which we refer to as the x2 method) 
to estimate the unknown weights and parameters. This proves to be a practical 
method for our application. The method of moments estimation procedure was also 
considered but, in some cases, it did not provide feasible solutions. Some other 
estimation procedures of the unknown weights and parameters are discussed by 
Titterington, Smith & Makov (1985). 

The x2 method was also used to test if eqn 1 provides a reasonably good fit to 
the data, i.e. to test if there exists a parameter D such that the resulting x2 value is 
suitably small. Titterington, Smith & Makov (1985) discuss some procedures designed 
to directly test eqn 1 vs. eqn 2 when the function f has a particular form such as the 
normal form. However, these procedures are complicated and depend very heavily 
on the functional form f. Therefore, we did not test eqn 1 against eqn 2, but tested if 
eqn 1 provides a reasonably good fit. If this hypothesis is rejected, we cannot 
conclude that eqn 2 is the alternative, but that eqn 2 is one among many alternatives 
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that may provide a better fit. However, because our basic assumption is that 
dispersal by random diffusion is the underlying mechanism, eqn 2 is the reasonable 
alternative. 

Goodness of fit of the model 

The x2 goodness-of-fit test was used to determine if field data from 0. imbricata 
could be explained by a probability density distribution that assumes either one 
dispersal mechanism (distribution f, eqn 1) or two dispersal mechanisms (distribution 
F, eqn 2). The same test was used to estimate the model parameters. 

To apply the x2 goodness-of-fit test to field data, the location of plants must be 
recorded according to distance from a source. The data are then grouped according 
to the frequency of occurrence in n radial intervals. The endpoints of the radial in- 
tervals, denoted as 0 = R, < R1 < R2 < ... <Rn = 0, are determined by the expected 
proportion of plants within each annular region. For a specified D or Pl, P2, D1, and 
D2, the radii are determined as follows: 

RIl 5 00 

10g(r)dr=-=J R,g(r)dr, (3) 0 N R,_- 

R, N- 10 

JR g(r)dr = ( - 2)N i = 2,. ,n-1, (4) 

where g(r) is either the distribution f(r) or F(r), given by eqn 1 or eqn 2, respectively, 
and N is the total number of plants. Because the value of N is known and the dis- 
tribution g(r) (either f(r) or F(r)) is specified by the model parameters, the end- 
points R, are determined uniquely from the formulas given in eqns 3 and 4. The 
expected frequency in each of the tail regions is 5, whilst the expected frequency in 
each of the central regions is N- 2? For N, 10 > 5, the x2 goodness-of-fit test can be 
applied (Wetherill 1967; Dudewicz & Mishra 1988). Thus, for a given N the number 
of annular regions n is fixed so that N> 2? > 5. (The expected frequencies for each of 
the tail regions is set = 5, thereby according finer intervals to these regions as 
differences between the actual and hypothesized distributions are more likely to 
show up in the tail regions.) 

To test if one dispersal mechanism is adequate to explain the spatial distribution, 
distribution f, eqn 1 is considered first. The data are tested against many distributions 
of the form (1) by selecting many different values for the diffusion coefficient. It is 
clear that the goodness of fit of the theoretical model and the field data hinges on 
the choice of D, the diffusion coefficient. An initial approximation for this parameter 
can be obtained from an estimate of the mean. The mean of the distribution f is 
r = (/DT)12. An estimate of the mean is the sample mean, r: 

r?? N ri 
r=j rf(r)dr , r=. 

Therefore, the diffusion coefficient approximation, D b D, is given by fD = 4r2/2r. 
Different values of the diffusion coefficient are chosen based on this approximation, 
in order to test a wide range of possible values. (In the application section we choose 
twenty different values of D, D = 0 1D,0.2D,... ,2D.) The range of distributions 
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1128 Model for dispersal of Opuntia imbricata 

with acceptably low x2 gives a corresponding range of acceptable values for the 
diffusion coefficient, D. If the x2 values for all of the different distributions tested 
against the data are greater than a specified x2 of low probability, then it is assumed 
that more than one dispersal mechanism is influential. 

To determine the parameters in the distribution of the form (2), the x2 goodness- 
of-fit test can again be applied. The diffusion coefficients, D, and D2, and the pro- 
portions, Pi and P2, can be varied over many combinations to obtain distributions 
which give acceptably low x2 values. The values of the parameters corresponding to 
these distributions are used as parameter estimations. (Best estimates of parameter 
values correspond to minimum x2 values.) 

The range of parameters limits the number of combinations to be chosen. Because 
D I D2, PI +P2 = 1, and the mean of the distribution F is given by 

0C 
R f rF(r)dr = p I(D ) / 2 + P2 (D2)2, 

it follows that DI - 4R2/yr - D2. The sample mean, r, can be used to estimate the 
mean, R, of the distribution F, 

R D" _jTl2. 

Therefore, it is reasonable to expect that D1 - , - D2. 
The method of moments was also used to estimate the parameters PI, P2, DI and 

D2 and provided a check on the x2 method. The method is more fully explained in 
the Appendix. The first four moments of the distribution F (f , rkF(r)dr, k = 0, 1, 2, 3) 
can be expressed in terms of the parameters. Approximations to the moments can 
be obtained from the data (_,= rkIN, k = 0, 1, 2, 3). In this manner, four non-linear 
equations are obtained which can be solved for the unknown parameters, Pi, P2, D1 
and D2. If the solutions are feasible, they may serve as estimates for pi, P2, D1 and 
D2 and may be used to check the estimates obtained via the x2 method. 

APPLICATION OF THE MODEL 

Four pastures with different densities of Opuntia imbricata were selected for the 
collec.ion of field data. Pastures were located in private ranches and were grazed 
by livestock and wildlife. They are identified by the name of the city closest to the 
ranch. Three pastures were located in south-west Texas: Alpine, Amarillo and 
Post. The fourth, Lovington, was located in eastern New Mexico. The approximate 
locations of the four pastures are 30?22'N, 103?34'W (Alpine), 35?21'N, 101?50'W 
(Amarillo), 33?05'N, 103?21'W (Lovington) and 33?08'N, 101?18'W (Post). Broadly 
speaking, they represent variations of climate (arid to semi-arid) and management 
due to different ownership. At a more detailed scale, they varied in size, form, soil 
types, range sites (vegetation) and landscape features such as slope, grass cover, 
etc. Sampling was stratified according to soil types and/or range sites, as defined 
and drawn in Soil Conservation Survey (SCS) maps and Soil Surveys for the pasture 
(Turner et al. 1974; Richardson, Grice & Putnam 1975; Pringle, Geiger & Burns 
1980; U.S. Department of Agriculture, unpublished data). 

In each range site parent plants of 0. imbricata were located. Parent plants were 
considered sources of dispersal for the species, and defined as the oldest plants that 
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could be found. Relative isolation, height and number of nodes were the primary 
variables used to identify and distinguish between the oldest plants and the individuals 
belonging to the next generation (second generation) of the species. Offspring of 
later generations were identified using additional variables (percentage of green 
tissue, number of branches and diameter). The oldest plants were easily located due 
to their large size and relative isolation from other plants (Fig. 1). 

In a circular plot with a radius of 20 m centred on each parent plant, the individuals 
belonging to the next generation (second generation) of the species were identified. 
Distance in metres (?0.1 m) from the centre of each second generation plant to the 
centre of each parent plant was recorded. The underlying assumption was that the 
second-generation plants were originally seeds or joints arising from the parent 
plant. Therefore, no two circular plots intersected (any two parent plants within 
40m of each other were rejected). Plants of later generations could have originated 
from the parent plant, its offspring, or some other generation; therefore, only the 
parent plant and its presumed offspring (second-generation plants) were included in 
the analysis. In this study there were sixteen, twelve, twenty-four and thirty-three 
parent plants identified at the Alpine, Amarillo, Lovington and Post pastures, 
respectively. The mean number of second-generation plants within a circular plot for 
all pastures was 2-7 + 1-2 plants. In the Amarillo and Lovington pastures the mean 
number of second-generation plants within a circular plot was 3 plants, whereas, in 
the Alpine and Post pastures there was a mean of 2-4 and 2-5 plants, respectively. 
The average height and number of nodes for individual plants varied between 
pastures, although within a pasture the variation was small. For example, in the Post 
pasture the mean (?S.D.) height of a parent plant was 214 + 0-4m, whereas the 
mean height of a second-generation plant was 1 9 + 0-4 m. Also, in the Post pasture 
the mean number of nodes of a parent plant was 20-9 + 2-6, whereas the mean 

FiG. 1. Infestation by Opuntia imbricata (cholla) in pasture at Post, Texas. 
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number of nodes of a second-generation plant was 15 9 + 2 5. Further details are 
given by Kunst (1990). 

The data for each pasture, analysed separately, were divided into six radial 
regions (n = 6), because the total number of second-generation plants ranged from 
a minimum of 36 (Amarillo) to a maximum of 84 (Post). (Application of the X2-test 
requires N,-i0> 5.) For the unimodal distribution, f, the lowest x2 and the corre- 
sponding value of the diffusion coefficient, D (in mi2) were calculated from a range 
of twenty values, D = 0 1D,0 2D,.. .,2D (with D5 given in Table 1). The null 
hypothesis was that a parameter D exists such that X2 < 9 24, i.e. the data can be 
explained by one dispersal mechanism. Therefore, the range of values for D that 
produced x2 < 9 24 was also calculated (Table 1). The null hypothesis is rejected if 
X2 > 9 24. The probability of X2 > 9-24 is <0 10, assuming the sample is from the 
theoretical distribution with 5 degrees of freedom. Therefore, the probability of 
rejecting a true null hypothesis is <0.10 (i.e. the probability of making a Type II 
error is f = 0 10 and the power of the test is 0.90). Therefore, it is unlikely (less 
than 10% probability) that the value of the diffusion coefficient D is outside the 
range of values. 

Based on Table 1, the data from Alpine and Amarillo pastures can be fitted quite 
well to the distribution f, assuming only one dispersal mechanism. The Lovington 
data were borderline as the probability of obtaining X2 > 7 29 is <020 (with 5 
degrees of freedom). However, the Post data clearly cannot be explained by a 
distribution of the form (1); the probability of obtaining x2 > 20 5 is <0 001 (with 
5 degrees of freedom). Thus, for the Post data, assuming dispersal by diffusion, we 
are forced to consider more than one dispersal mechanism (i.e. more than one 
diffusion coefficient). 

To test if two dispersal mechanisms are operative, distribution F (eqn 2) was 
used. The diffusion coefficients, DI and D2 (in m2), and the proportions, Pi and P2, 
were varied over 15 000 combinations and the x2 values computed. For twenty dif- 
ferent values of Pi (P2 = 1 - p1), 750 combinations of values for D1 and D9 were 
chosen such that DI = 0 02D,0 04D,. .. ,0 98D,D and D2 = 1 2D,14D,. .. .,40D. 
The values of Pt were pi = 0*0,0*05,0*10,... ,10. Again, the null hypothesis was 
that there exist parameter values pi and Di, i = 1,2 such that X2 < 9 24. The null 
hypothesis is rejected if x2 > 9 24 (which occurs with probability f = 0. 10). 

Data for all four pastures were tested for two dispersal mechanisms. In all four 
cases the null hypothesis was not rejected; i.e. dispersal by two mechanisms cannot 

TABLE 1. Dispersal of Opuntia imbricata on four pastures in Texas and New 
Mexico. One dispersal mechanism is assumed for each pasture. Parameter D is an 
approximation to the diffusion coefficient D, and D corresponds to the minimum 
x2. Values outside the range of the diffusion coefficient D occur with probability 
<0.10. Index T is an estimation of the minimum number of years for plants to 

eventually reach 100 m from the parent plant. 

Range of diffusion 
Pasture D) D coefficient D T x2 

Alpine 97-6 126-8 87-8-156-0 4-14 2-29 
Amarillo 116-7 140-0 81-7-163-4 3-94 0-969 
Lovington 68-6 75.4 75-4 (one value) 5-37 8-29 
Post 103-5 103-5 None 4-58 34-0 
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be rejected. A range of values for each of the parameters can be given (similar to 
Table 1), where the range of the x2 values is <9 24. The minimum x2 values for 
distribution F and their corresponding parameters were estimated (Table 2). 

Probability frequency histograms clearly show a bimodality of the data for the 
Alpine and Post pastures (Fig. 2). The x2 values (Tables 1 and 2) indicate that dis- 
tribution F with two dispersal mechanisms provides a better fit to the data than 
distribution f with only one dispersal mechanism. The fit is significantly better for 
Lovington and Post data (Fig. 2). 

The parameters Pl, P2, D1 and D2 were also estimated using the method of 
moments. For three of the pastures, the parameter estimations gave solutions that 
were not feasible (the value of D1 or D2 was negative). The probable cause of 
this was due to the small data sets (N = 38, 36, 72 and 84 in each of the four pas- 
tures, respectively). However, for the Lovington pasture, feasible solutions were 
obtained and were given by P1 = 0 094, P2 = 0 906, D1 = 0 442, and D2 = 82 4. These 
estimations are comparable to those given by the x2 method (Table 2). 

In addition to the diffusion coefficients (D or D1 and D2), it is useful to define a 
parameter which provides a rough estimate for the rate of spread of cholla. We 
consider the value of the radial distance within which 99% (ro.99) of the offspring 
are located. From a practical standpoint, r0.99 (= )Dln-100) is a measure of the 
potential length of the step at which 0. imbricata disperses in a particular range 
environment. We define an index T, an estimate of the minimum time required for 
offspring eventually to reach 100 m from the parent plant. An estimate of T requires 
information about plant establishment, growth and maturation. 

The development of joints and fruits and their dispersal, including plant estab- 
lishment, may occur each year from spring to late autumn. Plants may be established 
in 1 year (assuming no allowances or delays due to bad seasons, unavailability of 
gaps, or other deleterious factors); but there is an additional period of time required 
for seeds or plants to mature. Therefore, considering the period of time required for 
plant establishment and maturation, 1 year is the minimal time required for dispersal 
to commence in second-generation plants. Thus, a measure of the minimum number 
of time steps (years) for successive generations eventually to reach 100 m from the 
original parent plant is T = 100/r0.99 (Tables 1 and 2). 

The diffusion equation with population growth, 

- =Kt 2+- 2 +rS, 

TABLE 2. Dispersal of Opuntia imbricata on four pastures in Texas and New 
Mexico. Two dispersal mechanisms are assumed for each pasture. The proportions 
of the two dispersal mechanisms pR and P2 and diffusion coefficients D1 and D2 
correspond to the minimum x2. Indices T, and T2 are estimations of the minimum 
number of years for plants eventually to reach 100 m from the parent plant with 

respect to each of the dispersal mechanisms. 

Pasture Pi P2 D1 T1 D2 T2 X2 

Alpine 0 10 0 90 3 90 23 6 136-6 3-99 0-343 
Amarillo 0-15 0-85 116 7 4 31 140-0 3-94 0-662 
Lovington 0-10 0-90 1-37 39-8 82 3 5 14 1 87 
Post 0-15 085 2 07 32-4 1242 4 18 2-65 
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FIG. 2. Dispersal of Opuntia imbricata on pastures in Texas and New Mexico. Probability 
frequency histograms and probability distributions corresponding to one dispersal mechanism 
(distribution f with diffusion coefficient given in Table 1) and to two dispersal mechanisms 
(distribution F with proportions and diffusion coefficients given in Table 2) are given as a 
function of radial distance from the parent plant. 

has been used to estimate the asymptotic rate of spread for invading population 
(= 4rK) (Mollison 1986; Andow et al. 1990). However, this model cannot be 
applied to our population data, because there is insufficient information on the 
history of cholla invasion within each pasture. Therefore, using model (2), the index 
T provides an approximate estimate for the spread of cholla within each pasture. 
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DISCUSSION 

The result of the X2-tests for Post (Tables 1 and 2) suggest that the dispersal of cholla 
is due to two dispersal mechanisms (distribution F, Fig. 2). Diffusion through 
passive dispersal (joints and fruits free-falling to the ground) locates the offspring 
close to the parent plant. It will take a minimum of 30 years for 0. imbricata to 
spread 100 m (T1, Table 2) with only the passive component. Active dispersal locates 
the offspring further from the parent plant; it will take a minimum of 4 years for 
cholla to spread 100m by active dispersal. 

The ranch owner (J. Kirkpatrick, personal communication 1990) reported that the 
Post pasture was root-ploughed during the late 1950s, with the consequent elimination 
of almost all standing woody vegetation. He observed that beginning with a few 
plants, 0. imbricata invaded the pasture. Based on this information, cholla attained 
its current density in 30-35 years, indicating that passive dispersal alone did not 
account for the current spread. 

In the Lovington pasture, the X2-test for the single dispersal machanism (distribution 
f) was not as conclusive as for the Post data (Table 1). However, the management 
history of the pasture and landscape features support the choice of the distribution 
F (Fig. 2). The owner (L. Monteith, personal communication 1986) reported that 
0. imbricata was present in low densities in a small spot close to the watering point 
and was not a problem. The high infestation currently observed was due to over- 
grazing in the last 10-15 years. As in the case of Post, and given the even shorter 
time span, a passive dispersal mechanism alone does not explain the sudden increase 
in the species density (Table 2). 

The significance of the x2 tests for the Alpine pasture was inconclusive as far as 
selecting the distribution (f or F) that better explains the data. The species may dis- 
perse by either one or two mechanisms. There was no information available about 
the previous history of the pasture or the behaviour of the cholla population to help 
in the decision. 

The results of the x2 tests for the Amarillo pasture were similar to that of Alpine. 
Both mechanisms of dispersal locate the offspring plants approximately the same 
distance (Table 2) from the source. The field data show only one maximum, a 
unimodal distribution (Fig. 2). It is not clear, however, which mechanism was 
primarily responsible for the peak in the probability distribution. Unlike the other 
pastures, however, the Amarillo pasture has a broken topography, resulting in a 
mixture of range sites. The only areas available for sampling were smooth hilltops 
and slopes surrounding the main watering point, where cholla plants were mechan- 
ically cut off at ground level and left in the pasture, and where parent plants were 
not present. Although the range was in good condition, it was reported that severe 
overgrazing had occurred sometime in the past. The previous history of overgrazing 
and rough topography were assumed to be responsible for the results obtained. 

As can be seen from Table 2, at least for the Post and Lovington pastures, about 
10-15% of the plants disperse close to the parent plant (passive dispersal), whilst 
85-90% disperse further away (active dispersal). If the dispersal mechanism re- 
sponsible for the large diffusion coefficient D2 is truly active dispersal, then it may 
be inferred that the sudden invasions of 0. imbricata would not be possible without 
the help of livestock and wildlife grazing. 

A basic assumption of our model was that dispersal of cholla can be explained 
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by a model based on the diffusion equation, with multiple diffusion coefficients. 
This appears to be a plausible assumption; however, if evidence suggests that other 
dispersal processes are significant, such as convection or long-range jump processes, 
then it is necessary to consider other model formulations (e.g. Okubo 1980; Banks, 
Kareiva & Zia 1988; Othmer, Dunbar & Alt 1988; van den Bosch et al. 1988; van 
den Bosch, Zadoks & Metz 1988a,b; Hengeveld 1989). 
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APPENDIX 

Another way to estimate the parameters Pl, P2, D1 and D2 in the distribution F 
(eqn 2) is to use the first four moments of the distribution. These moments can be 
expressed in terms of the parameters as follows: 

rw T F(r)dr = p, + P2= 1; 

frF(r)dr = 2 ( D+p D2T)= 2T 

T r2F(r)dr = p1DI + p2D2 = 

332 3 32) r3F(r)dr= 6 (pIDI2 +p2D2'2)= 6. 
0 4 ~~~~~~~~4 

The approximations to the integrals in the equations above are calculated from 
sample data, 

N rk 

ENrI k = 
, 1, 2, 3, 

and used in place of the integrals to obtain four (approximate) equations with four 
unknowns (PI, P2, D-, D2). It can be shown, by algebraic manipulation, that 

D1 and D2 are the two roots of the quadratic equation: 

(U2 _ 0)X2 + (6-_ ap)X + (-2 - ab) = O. 

The solutions are not feasible if either of the roots is negative or complex. The value 
of P2 is given by 

P2 DD 

and P1 = 1 - P2. The value of PI or P2 may be negative which again yields infeas- 
ible solutions. 
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