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Amer. J. Bot. 68(4): 463-470. 1981. 

CHROMOSOME COUNTS, CYTOLOGY, AND 
REPRODUCTION IN THE CACTACEAE' 

ROBERT Ross 
Department of Botany, University of Rhode Island, Kingston, Rhode Island 02881 

ABSTRACT 

Chromosome counts and observations of reproduction for 55 taxa of Cactaceae indicate that 
polyploidy is correlated with self-fertility, adventive embryony, profuse branching, and vege- 
tative reproduction. Six genera (Blossfeldia, Cleistocactus, Frailea, Pelecyphora, Rebutia, and 
Strombocactus) and 35 species or varieties are reported here for the first time. Preliminary 
observations of pachytene and diplotene indicate that these stages may be more useful in 
chromosome recognition than mitotic stages. Secondary association at metaphase I and II is 
interpreted as a retention of homologue association at interphase I and II (interkinesis). During 
meiosis of certain species, Feulgen negative bodies are present. The production of an abnormal 
premeiotic division is suggested as a mechanism for polyploid origin. 

SEVERAL cytogenetic studies establish that the 
Cactaceae have a base number of x = 1, and 
polyploidy is the principle variation (Beard, 
1937; Remski, 1954; Pinkava and McLeod, 
1971). Earlier counts of n = 9 and n = 12, as 
summarized by Pinkava and McLeod (1971), 
were in error, but aneuploidy has been re- 
ported in meiotic material of Deamia testudo 
(Karw.) Britt. & Rose, n = 12 (Bhattacha- 
ryya, 1970). Either autopolyploidy or allopoly- 
ploidy have been reported in ten genera, in- 
cluding the large, well-surveyed Mammillaria 
and Opuntia (Katagiri, 1953; Remski, 1954). 
The significance of polyploidy, however, has 
not been related to the biology of the plants, 
particularly the mode of reproduction. Data 
from this study and from earlier works on em- 
bryology (Maheshwari and Chopra, 1955; En- 
gleman, 1960; Tiagi, 1970), systematics (Phil- 
brick, 1963; Fischer, 1971), and pollination 
ecology (Alcorn, McGregor and Olin, 1962) of 
the family, allow an initial comparison between 
reproductive mode and ploidy level. 

There are a number of cytological features 
reported in the literature on Cactaceae which 
were reinvestigated during the examination of 
meiotic material to determine ploidy level. In 
the first chromosome report for the family, 
cytomixis in a species of Mammillaria was 
noted and illustrated (Ishii, 1929). The only 
illustrated study of cactus meiosis (Beard, 
(1937) does not show this phenomenon nor is 

1 Received for publication 29 January 1980; revision 
accepted 18 November 1980. 

This investigation represents a portion of a dissertation 
submitted for the Ph.D. degree, University of Oklahoma, 
Norman, Oklahoma. The author is grateful for the assis- 
tance and suggestions offered by Drs. N. H. Boke, J. 
Estes, Edwin Leuck, D. J. Pinkava and Mr. Jim Weedin 
in preparation of this manuscript. 

it reported by other authors. Beard, however, 
found extra-nuclear bodies in Echinocereus 
papillosus Linke (=E. blanckii (Poselger) F. 
Palmer var. blanckii) and other unspecified 
taxa. These bodies were also observed in Hy- 
locereus undatus (Haw.) Britt. & Rose (Banerji 
and Sen, 1954). Finally from Beard's work is 
the interesting description of tetraploid Mam- 
millaria compressa- "pollen mother cells at 
interkinesis show twenty-two pairs of chro- 
mosomes." Similar pairing of chromosomes 
at metaphase I and II is reported by Lawrence 
(1931) and Darlington (1937) as secondary as- 
sociation. 

The cactus collection at the University of 
Oklahoma provided meiotic material for the 
examination of the above mentioned cytolog- 
ical features and for the determination of chro- 
mosome numbers in many unreported taxa. 
Flowering and fruiting of plants in the collec- 
tion also permitted study of reproductive 
modes and their relation to polyploidy in the 
family. 

MATERIALS AND METHODS-South Ameri- 
can plants obtained from commercial sources 
and field-collected Mexican and United States 
plants were grown in University of Oklahoma 
greenhouses for floral and meiotic material. 
Buds and roots were fixed in Carnoy's solution 
(3 ethanol: 1 glacial acetic acid, V:V) between 
9:00 a.m. and 11:00 a.m. and stored for 2 days. 
After washing in 70% ethanol, the material was 
stained with alcoholic-carmine-HC 1 (Snow, 
1963) or Feulgen's stain (Jensen, 1962). 
Squashing in 45% acetic acid and immediately 
photographing with a Leitz phase contrast 
microscope and high contrast copy film pro- 
duced the best results. Material was mounted 
either in Hoyer's medium or air dried and 
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mounted in Clearmount. Callose wall obser- 
vations were enhanced by mounting a meio- 
cyte wall in Hyrax because of the medium's 
higher refractive index. Stages of embryo de- 
velopment were isolated in Herr's clearing so- 
lution (Herr, 1971). 

Greenhouse plants were artifically self-pol- 
linated and fruit and seed production investi- 
gated. Plants that produced fruit following self- 
ing were excluded from pollinators the 
following year in order to verify original ob- 
servations. 

Pollination is generally agreed to be essential 
for endosperm initiation in cacti, a prerequisite 
for the development of either sexual or asexual 
embryos (Maheshwari and Chopra, 1955). To 
determine whether self-pollinating taxa are au- 
togamous (zygotic embryos) or apomictic (ad- 
ventive embryos), embryo development was 
observed in those taxa where ten fruits of vary- 
ing age were available. A series of stages was 
required because, although zygotic embryos 
are produced initially, in later stages adventive 
embryos may also develop (Philbrick, 1963). 

Voucher specimens were deposited in the 
Robert Bebb Herbarium (OKL). 

OBSERVATIONS AND DISCUSSION-Pachy- 
tene and diplotene stages-During mitosis and 
meiosis, cactus chromosomes have few dis- 
tinctive morphological characters. Mitotic 
chromosomes occasionally show a pair of sat- 
ellites (Remski, 1954) but otherwise appear 
similar. Karyotyping of only one species, Hy- 
locereus undatus, has been attempted (Banerji 
and Sen, 1954). Pachytene and diplotene, how- 
ever, reveal chromosomes with a chromomere 
pattern (Fig. 1, 2). Usually, recognition of par- 
ticular chromosomes is not possible; however, 
in Pereskia diaz-romeroana, two bivalents at 
diplotene are marked by regions adjacent to 
the telomeres which do not synapse (Fig. 3). 
These pictures show that karyotyping studies 
are more profitable using meiotic material than 
mitotic. 

Multivalent formations-Most taxa were 
examined at diakinesis for bivalents and mul- 
tivalents. Polyploids form bivalents, except in 
Rebutia spegazziana, R. cv. nivea and Mam- 
minillaria prolifernl (Fig. 4), each of which has 
three to five quadrivalents. The number of 
quadrivalents is possibly higher, for chiasmata 
are frequently lost during diakinesis (Fig. 4). 
Observations of numerous multivalents in M. 
prolifera are similar to those by Remski (1954), 
but findings in M. compressa differ. Remski 
reports that in M. compressa meiosis is very 
irregular, with microspores rarely being pro- 

duced. In most plants I investigated, micro- 
spores are produced and there are very few 
quadrivalents (Fig. 5). 

Secondar-y associaition-Bivalents at meta- 
phase I and chromosomes at metaphase II oc- 
casionally appear in pairs. Beard (1937) noted 
that "pollen mother cells at interkinesis show 
twenty-two pairs of chromosomes" in tetra- 
ploid M. compressa. This phenomenon is 
termed secondary pairing, or secondary as- 
sociation, by Darlington (1937). He observed 
that chromosomes may not associate at dia- 
kinesis but may become secondarily paired at 
metaphase I and metaphase II; however, they 
may rarely form quadrivalents (Lawrence, 
1931). The secondary association is interpreted 
by Darlington as revealing the presence of 
some homology. Another interpretation (Heil- 
born, 1936) is that secondary pairing of hom- 
ologues results not from "attraction between 
homologous parts of chromosomes" but from 
a "differential grouping of chromosomes of 
different size and mass." 

The indistinguishable chromosomes of the 
Cactaceae sometimes form pairs of bivalents 
at metaphase I in tetraploids (Fig. 7). Such a 
situation may be a chance association of bi- 
valents in a tetraploid or interpreted as an ex- 
ample of secondary association. During pro- 
phase II, chromosomes of similar morphology 
(Fig. 13) or chromosomes with similar degrees 
of condensation (Fig. 14, 15) appear to be as- 
sociated. Because individual chromosomes 
lack distinctive features, many associations 
remain questionable. To determine if the as- 
sociations are actually between homologous 
chromosomes, the nucleoler organizing re- 
gions were analyzed. In the cactus material of 
this study there is one nucleolus per genome, 
and therefore one nucleolus organizer per ge- 
nome. In Rebutia cv. 'nivea' (4N), the nu- 
cleolus was used as a marker. Rebutia cv. 
'nivea' produces one or two nucleoli in each 
interkinesis nucleus (Fig. 10). In each instance 
where one nucleolus was observed, two chro- 
mosomes were attached to the nucleolus; when 
two nucleoli were present, each nucleolus has 
a single chromosome attached and the two 
nucleoli were closely associated (Fig. 10). I 
interpret this to mean that the two nucleoli are 
forming in close association during the short 
period of interkinesis because the genes for 
their formation are in close proximity. The two 
nucleolus organizers are on either homologous 
or homeologous chromosomes. 

The concept that homologues are associated 
at times other than prophase I is supported by 
observations of premeiotic divisions (Brown 
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Fig. 1-5. 1. Rhipscalis pilocarpa, pachytene. x2,000. 2. Mammillaria candida, pachytene. x2,000. 3. Pereskia 
diaz-romeroana, diplotene. Arrows indicate chromosome segments that do not synapse. x 2,000. 4. Mammillaria prolif- 
era, diakinesis. Arrow indicates fine chiasma between bivalents that form one of several quadrivalents in this tetraploid. 
x2,600. 5. Mammillaria compressa, diakinesis. Tetraploid with two quadrivalents, arrows point to quadrivalents. 
x2,000. All figures are Feulgen-stained. 

and Stack, 1968) and of interphase nuclei in 
root tips (Werry, Stoffelson, Engels, van der 
Lan, and Spanjers, 1977). The mechanisms for 
the association of homologues at these stages 
probably also function at interkinesis. Second- 
ary associations at metaphase I and II are, 
possibly, a retention of homologue associa- 
tions from interphase and interkinesis, respec- 
tively. 

Extranuclear bodies-Extranuclear bodies 
are reported by Beard (1937) in many taxa from 
early diakinesis to telophase II, but she refers 
specifically only to Echinocereus papillosus 
Linke. Of 45 other taxa which Beard studied, 
only Hylocereus undatus is also reported to 

have similar bodies (Banerji and Sen, 1954). 
In my study, extranuclear bodies were found 
in E. blanckii var. angusticeps, E. knipleanus, 
and Mammillaria wildii. In these taxa, the bod- 
ies do not stain with periodic Shiff's reagent 
after hydrolysis in 1 N HCI, but are visible with 
phase microscopy after this treatment (Fig. 
11). In Hylocereus undatus, the bodies were 
also found to be Feulgen negative (Banerji and 
Sen, 1954). These observations indicate that 
the extranuclear bodies do not contain DNA. 

Cytomixis-Even though cytomixis has 
been investigated for over 50 years, interpre- 
tations still vary. Most workers agree in defin- 
ing cytomixis as the transfer of chromatin be- 
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bigelovil with arrow near pores (dark spots). Dark spots and dark halo around callose wall is a phase effect. xl ,400. 
9. Interpretive drawing of Fig. 8 showing the outline of adjacent cells removed in preparation. Surface "'a"' is cell wall 
between cells. 10. Rebutia sp. shows cell in interkinesis with nucleus on left having a single nucleolus (left arrow) and 
other nucleus having two nucleoli (night arrow) closely associated. x 2,000. 11. Echinocereus blanckii var. angusticeps, 
prophase II. extranuclear body (arrow) between nuclei. xl,600. 12. Mammillaria compressa, telophase II. Arrows 
indicate micronuclei. x1 ,600. 13. Mammillaria compressa, interkinesis. pair of morphologically similar chromosomes 
showing secondary association is indicated by the arrow. x 2,600. 14. Mammillaria prolifera, interkinesis. Similarly 
condensed chromosomes showing secondary association are indicated by the arrows. x 2.000. 15. Interpretive drawing 
of Fig. 14 showing details of chromosomes. Fig. 10 is a Snow's preparation; all others are Feulgen-stained. 

tween microsporocytes, but they differ on 
whether or not it is an artifact. Heslop-Har- 
rison (1966) reported that cytoplasmic chan- 
nels between cells result in the microsporo- 
cytes functioning as a coenocyte whose nuclei 

develop and divide in synchrony. Cytoplasmic 
channels connect meiocytes through pores in 
the callose wall and allow the exchange of small 
organelles but not nuclear material. In his 
opinion experiments and observations indicate 
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that nuclear transfer is caused by physical and 
osmotic pressure in preparing the tissue; i.e., 
cytomixis is induced in vitro and does not oc- 
cur in vivo. A different interpretation was 
made by Whelan (1974) in a survey of pores 
in callose walls. He considered the pores "to 
be indicative of cytoplasmic connections be- 
tween the meiocytes; the exchange of cyto- 
plasmic organelles should be possible, and in 
extreme cases, the exchange of nuclear ma- 
terial. " 

Pores in the callose wall of cactus meiocytes 
are common (Fig. 8) and similar to those il- 
lustrated by Whelan (1974). Normally pores 
are restricted to regions adjacent to microspo- 
rocytes and range in size from 0.3 to 1.7 ,um 
(Fig. 9). Evidence supporting the natural oc- 
currence of cytomixis could not be found, but 
the phenomenon is frequently present in cactus 
material as an artifact. The appearance of cy- 
tomixis is probably produced by applying pres- 
sure, either physical or osmotic, to anthers 
during fixation (Heslop-Harrison, 1966). 

Premeiotic abnormalities-Abnormal pre- 
meiotic divisions are rare but occasionally pro- 
duce meiocytes containing additional chro- 
mosomes. One tetrad of microspores from 
Mammillaria compressa (4x) had additional 
chromosomes in two micronuclei which had 
not been incorporated into the products of 
meiosis (Fig. 12).The normal complement of 
chromosomes was present in each microspore 
nucleus (n = 22), and the base number was 
present in each micronucleus. A second ab- 
normality was a tetraploid meiocyte (Fig. 6) 
among diploid microsporocytes in an anther 
of Pereskia diaz-romeroana. Such a meiocyte 
has the potential for 11 quadrivalents, but 22 
bivalents were present. Therefore, meiosis 
would likely yield unreduced gametes and con- 
sequently polyploids. Through such gametes 
polyploidy may arise by the production of an 
intermediate triploid plant (Harlan and DeWet, 
1975). Pinkava, McGill, Reeves, and McLeod 
(1977) have found a diploid population of 
Opuntia basilaris var. treleasei which includ- 
ed a triploid individual which was hypothe- 
sized to have arisen from an unreduced plus 
reduced gametes. 

Polyploidy and reproductive mode-Obser- 
vations on the reproduction of the 55 taxa show 
that seeds are produced upon self-pollination 
in only 11 taxa and by cross-pollination in 44 
taxa (Table 1). Of the 11 self-pollinating taxa, 
seven are autogamous and Mammillaria pro- 
lifera is apomictic by adventive embryos. Re- 
butia kupperiana, R. spegazziana, R. cv. 'ni- 

vea' lacked crucial developmental stages for 
determination. 

Most of the taxa requiring cross-pollination 
were not examined for embryo development 
because of the paucity of seed material. Eleven 
Echinocereus taxa of this study were examined 
and found to be allogamous. Previous studies 
also report zygotic embryos in taxa of Astro- 
phytum, Thelocactus, and Pediocactus (En- 
gleman, 1960) which my observations indicate 
are self-incompatible. Therefore, most taxa 
requiring cross-pollination are reproducing 
sexually. However, some primarily alloga- 
mous taxa, Mammillaria zeilmanniana (Ross, 
1974) and M. tenuis DC. (M. elongata var. 
tenuis (DC.) Schumann) (Tiagi, 1970), are also 
partially apomictic by adventive embryos after 
endosperm formation. 

A comparison of the ploidy level with the 
mode of reproduction in the Cactaceae agrees 
with Stebbins's (1950) theory that polyploidy is 
more likely to become established in self-fertile 
or apomictic taxa. Of the taxa examined in this 
study (Table 1), 66% of polyploids (6 taxa) are 
self-fertile but only 11% (5 taxa) of the diploids. 
Self-sterile polyploids of this study, Mammi- 
laria compressa, M. parkinsonia, and Gym- 
nocalcycium bruchii, have extensive vegeta- 
tive branching. Opuntia, which has a high 
frequency of vegetative propagation, adven- 
tive embryos, and self-fertility (Philbrick, 
1963), has extensive polyploidy. Forty-eight 
percent of the Opuntia taxa examined by Wee- 
din & Powell (1978) and Pinkava et al. (1977) 
are polyploids. In contrast, Remski (1954) re- 
ports only 8% polyploidy in Mammillaria, 
which has few of the reproductive character- 
istics favoring polyploids (Craig, 1945; Tiagi, 
1970). 

Remski (1954) hypothesized that somatic 
doubling, which occurs in root tips, may also 
occur in the apical meristem and thereby pro- 
duce autopolyploids in Mammillaria. She con- 
sidered the extensive quadrivalent formation 
evidence for autoploidy. Such quadrivalent 
formation would also occur, however, in in- 
terracial hybrids (Stebbins, 1950). Supporting 
a hybrid origin for polyploids, even self-fertile 
taxa, is the presence of mechanisms favoring 
cross-pollination. Large, showy flowers for 
which the cacti are noted occur in most of the 
self-fertile polyploids. At first glance, two ex- 
ceptions in this study are Blossfeldia and Mel- 
ocactus. Blossfeldia liliputiana, the smallest 
of the cacti, has a small flower, but it is not 
readily self-pollinating, even though it is self- 
fertile and nectar is produced. In Melocactus 
Inatanzanus the flowers are inconspicuous, but 
the subtending spines of the flowers form a 
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TABLE 1. Chromosome counts and mode of reproduction in the Cactaceaea 

Gametic 
chromosome 

Taxon Reproduction no. Location and voucher 

Ancistrocactus scheeri (SD.) Br. & R.* S 11 TX: Starr Co., RR 151. 
Astrophytum capricorne (Dietr.) Br. & R-2 S 11 MEXICO: Coahuila, NB sn. 
Blossfeldia liliputiana Werd.** A 33 CS, RR 210. 
Cleistocactus baumannii (Lem.) Lem.** S 11 Univ. of Calif. 53.1221, 

RR 201. 
Coryphantha cornifera (DC.) Br. & R. S 11 TX: Terrell Co., NB sn. 

var. echinus (Engelm.) L. Benson5 
C. ottonis (Pfeiff.) Lem.* S 11 CS, RR 215. 
Echinocereus blanckii var. angusticeps S 11 TX: Duval Co., RR 190. 

(Clover) L. Benson1 
E. pectinatus (Scheidw.) Engelm. S 11 CS, RR 216. 

var. pectinatus* 
E. pectinatus (Scheidw.) Engelm.) S 11m NM: Hidalgo Co., RR 132. 

var. rigidissimus * 

E. pectinatus (Scheidw.) Engelm. S 11 CS, RR 224. 
var. wenigeri L. Benson* 

E. reichenbachii (Terscheck) Haage f. S 11 TX: Jim Wells Co., RR 175. 
var. albertii L. Benson* 

E. reichenbachii (Terscheck) Haage f. S 11 OK: Comanche Co., RR 140. 
var. albispinus (Lahman) L. Benson* 

E. reichenbachii (Terscheck) Haage f. S 11 OK: Woods Co., RR 181. 
var. perbellus (Br. & R.) L. Benson* 

E. reichenbachii (Terschek) Haage f. S 11 TX: Starr Co., RR 152. 
var. fitchii (Br. & R.) L. Benson1 

E. reichenbachii (Terschek) Haage f. S 11 OK: Murray Co., RR 139. 
var. reichenbachii1 

E. reichenbachii (Terscheck) Haage f. S 11 TX: Brewster Co., RR & J. 
var. chisoensis (Marshall) L. Benson* Weedin 146. 

E. viridiflorus Engelm. var. viridiflorus4 S 11 TX: Randall Co., RR 180. 
Echinofossulocactus sp.* S 11 CS, RR 217. 
Epithelantha bokei L. Benson5 A 11 TX: Brewster Co., NB & 

J. Massey 488. 
Escobaria tuberculosa (Engelm) Br. & R.4,5 S 11 TX: Brewster Co., RR 147. 
Frailea colombiana (Werd.) Backbg.** A 11 CS, RR 197. 
Gymnocalycium bruchii (Speg.) Hoss.* S 22 CS, RR 202. 

G. damsii Br. & R.* S 11 CS, RR 203. 
Mammillaria bocasana PoS.2 S 11 CS, RR 112. 

M. candida Scheidw.3 S 11 MEXICO: San Luis Potosi, 
NB sn. 

M. compressa DC.1,3 S 22 CS, RR 218. 
M. melaleuca Karw. ex SD.* S 11 MEXICO: Tamaulipas, C. 

Glass & R. Foster #666 
M. parkinsonia Ehrenbg.3 S 22 CS, RR 219. 
M. pectinifera Weber* S 11 CS, RR 209. 
M. pennispinosa Krainz S 11 CS, RR 196. 
M. spinossisima Lem.3 S 11 CS, RR 221. 
M. prolifera (Miller) Haw. A 22 TX: Duval Co., RR 191. 

var. texana (Poselger) Borg3 
M. uncinata Zucca.3 S 11 CS, RR 222. 
M. wildii Dietr.3 S 11 CS, RR 110. 
M. zeilmanniana B6d.3 S 11 CS, RR 111. 

Melocactus matanzanus Leon* A 22 CUBA: Matanzas, NB sn. 
Myrtillocactus geometrizans S 11 MEXICO: Queretaro, NB sn. 

(Mart.) Cons.2 
Neolloydia erectrocentra (Coulter) S 11 AZ: Pima Co., NB sn. 

L. Benson* 
Notocactus haselbergii Berger* S im CS, RR 204. 

Pelecyphora aselliformisEhrenberg** S 11 MEXICO: San Luis Potosi, 
NB sn. 

P. strobiliformis (Werd.) Fric. & Schelle* S 11 CS, RR 206. 
Pereskia corrugata Cutak* 5 11 Mo. Bot. Garden 19913, 

RR 220. 
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TABLE 1. Continued 

Gametic 
chromosome 

Taxon Reproduction no. Location and voucher 

P. diaz-romeroana Cardenas* A 11 BOLIVIA: Seeds from 
Cardenas, RR 195. 

Rebutia kupperiana Bod.** A 22 CS, RR 213. 
R. minuscula K. Sch.* A 11 CS, RR 214. 
R. spegazziana Backbg.* A 22 CS, RR 199. 
R. steinbachii Werd.* S 11 CS, RR 194. 
R. violaciflora Backbg.* A 11 CS, RR 205. 
R. sp. (unidentified cultivar-' 'Nivea'') A 22 CS, RR 198. 

Rhipsalis pentaptera Pfeiff.* S im CS, RR 193. 
R. pilocarpa Loefgr.* S 11 CS, RR 192. 
R. salicornioides (Haw.) Br. & R.* S 11 CS, RR 211. 

Thelocactus valdezianus (Moller)* S 11 MEXICO: Coah., C. Glass 
& R. Foster, 2996. 

Strombocactus disciformis (DC.) Br. & R.** S 11 CS, RR 208. 
S. klinkeranus Backbg. & Jacobs* S 11 MEXICO: San Luis Potosi, 

E. Anderson, 1626. 

a KEY: * First report for a species or infraspecific taxon; ** First report for a genus; S-self-sterile; m-Mitotic 
count; A-Self-pollination produces seed; CS-Commercial source; 1-Reported by E. C. Beard; 2-Reported by S. 
Katagiri; 3-Reported by M. F. Remski; 4-Reported by D. J. Pinkava et al. either 1971, 1973, or 1977; 5-Reported 
by J. Weedin & A. M. Powell; Abbreviations for names of collectors: RR-Robert Ross, NB-Norman Boke. 

bright red structure, a cephalium, and the in- 
dividual flowers have abundant nectar for the 
pollinator. 

Polyploidy in the Cactaceae originates 
through premeiotic abnormalities such as those 
observed in Pereskia diaz-romeroana or so- 
matic doubling in the meristems as hypothe- 
sized by Remski. These rare events probably 
occur in all types of plants, but lead to the 
establishment of polyploid taxa when they are 
present in conjunction with self-fertility or apo- 
mictic mechanisms. 
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