
The Hardy-Weinberg Principle and
estimating allele frequencies

Introduction

To keep things relatively simple, we’ll spend much of our time in this course talking about
variation at a single genetic locus, even though alleles at many different loci are involved in
expression of most morphological or physiological traits. We’ll spend about three weeks in
mid-October studying the genetics of quantitative variation, but until then you can asssume
that I’m talking about variation at a single locus unless I specifically say otherwise.

The genetic composition of populations

When I talk about the genetic composition of a population, I’m referring to three aspects of
variation within that population:1

1. The number of alleles at a locus.

2. The frequency of alleles at the locus.

3. The frequency of genotypes at the locus.

It may not be immediately obvious why we need both (2) and (3) to describe the genetic
composition of a population, so let me illustrate with two hypothetical populations:

A1A1 A1A2 A2A2

Population 1 50 0 50
Population 2 25 50 25

It’s easy to see that the frequency of A1 is 0.5 in both populations,2 but the genotype
frequencies are very different. In point of fact, we don’t need both genotype and allele

1At each locus I’m talking about. Remember, I’m only talking about one locus at a time, unless I
specifically say otherwise. We’ll see why this matters when we get to two-locus genetics in a few weeks.

2p1 = 2(50)/200 = 0.5, p2 = (2(25) + 50)/200 = 0.5.
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frequencies. We can always calculate allele frequencies from genotype frequencies, but we
can’t do the reverse unless . . .

Derivation of the Hardy-Weinberg principle

We saw last time using the data from Zoarces viviparus that we can describe empirically and
algebraically how genotype frequencies in one generation are related to genotype frequencies
in the next. Let’s explore that a bit further. To do so we’re going to use a technique that is
broadly useful in population genetics, i.e., we’re going to construct a mating table. A mating
table consists of three components:

1. A list of all possible genotype pairings.

2. The frequency with which each genotype pairing occurs.

3. The genotypes produced by each pairing.

Offsrping genotype
Mating Frequency A1A1 A1A2 A2A2

A1A1 × A1A1 x211 1 0 0
A1A2 x11x12

1
2

1
2

0
A2A2 x11x22 0 1 0

A1A2 × A1A1 x12x11
1
2

1
2

0
A1A2 x212

1
4

1
2

1
4

A2A2 x12x22 0 1
2

1
2

A2A2 × A1A1 x22x11 0 1 0
A1A2 x22x12 0 1

2
1
2

A2A2 x222 0 0 1

Believe it or not, in constructing this table we’ve already made three assumptions about the
transmission of genetic variation from one generation to the next:

Assumption #1 Genotype frequencies are the same in males and females, e.g., x11 is the
frequency of the A1A1 genotype in both males and females.3

Assumption #2 Genotypes mate at random with respect to their genotype at this partic-
ular locus.

3It would be easy enough to relax this assumption, but it makes the algebra more complicated without
providing any new insight, so we won’t bother with relaxing it unless someone asks.
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Assumption #3 Meiosis is fair. More specifically, we assume that there is no segregation
distortion; no gamete competition; no differences in the developmental ability of eggs,
or the fertilization ability of sperm.4 It may come as a surprise to you, but there are
alleles at some loci in some organisms that subvert the Mendelian rules, e.g., the t
allele in house mice, segregation distorter in Drosophila melanogaster, and spore killer
in Neurospora crassa. A pair of papers describing work in Neurospora just appeared a
couple of years ago [3, 4].

Now that we have this table we can use it to calculate the frequency of each genotype in
newly formed zygotes in the population,5 provided that we’re willing to make three additional
assumptions:

Assumption #4 There is no input of new genetic material, i.e., gametes are produced
without mutation, and all offspring are produced from the union of gametes within
this population, i.e., no migration from outside the population.

Assumption #5 The population is of infinite size so that the actual frequency of matings
is equal to their expected frequency and the actual frequency of offspring from each
mating is equal to the Mendelian expectations.

Assumption #6 All matings produce the same number of offspring, on average.

Taking these three assumptions together allows us to conclude that the frequency of a par-
ticular genotype in the pool of newly formed zygotes is∑

(frequency of mating)(frequency of genotype produce from mating) .

So

freq.(A1A1 in zygotes) = x211 +
1

2
x11x12 +

1

2
x12x11 +

1

4
x212

= x211 + x11x12 +
1

4
x212

= (x11 + x12/2)2

= p2

freq.(A1A2 in zygotes) = 2pq

freq.(A2A2 in zygotes) = q2

4We are also assuming that we’re looking at offspring genotypes at the zygote stage, so that there hasn’t
been any opportunity for differential survival.

5Not just the offspring from these matings

3



Those frequencies probably look pretty familiar to you. They are, of course, the familiar
Hardy-Weinberg proportions. But we’re not done yet. In order to say that these proportions
will also be the genotype proportions of adults in the progeny generation, we have to make
two more assumptions:

Assumption #7 Generations do not overlap.

Assumption #8 There are no differences among genotypes in the probability of survival.

The Hardy-Weinberg principle

After a single generation in which all eight of the above assumptions are satisfied

freq.(A1A1 in zygotes) = p2 (1)

freq.(A1A2 in zygotes) = 2pq (2)

freq.(A2A2 in zygotes) = q2 (3)

It’s vital to understand the logic here.

1. If Assumptions #1–#8 are true, then equations 1–3 must be true.

2. If genotypes are in Hardy-Weinberg proportions, one or more of Assumptions #1–#8
may still be violated.

3. If genotypes are not in Hardy-Weinberg proportions, one or more of Assumptions #1–
#8 must be false.

4. Assumptions #1–#8 are sufficient for Hardy-Weinberg to hold, but they are not nec-
essary for Hardy-Weinberg to hold.

Point (3) is why the Hardy-Weinberg principle is so important. There isn’t a population
of any organism anywhere in the world that satisfies all 8 assumptions, even for a single
generation.6 But all possible evolutionary forces within populations cause a violation of at
least one of these assumptions. Departures from Hardy-Weinberg are one way in which we
can detect those forces and estimate their magnitude.7

6There may be some that come reasonably close, but none that fulfill them exactly. There aren’t any
populations of infinite size, for example.

7Actually, there’s a ninth assumption that I didn’t mention. Everything I said here depends on the
assumption that the locus we’re dealing with is autosomal. We can talk about what happens with sex-linked
loci, if you want. But again, mostly what we get is algebraic complications without a lot of new insight.
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Estimating allele frequencies

Before we can determine whether genotypes in a population are in Hardy-Weinberg propor-
tions, we need to be able to estimate the frequency of both genotypes and alleles. This is
easy when you can identify all of the alleles within genotypes, but suppose that we’re trying
to estimate allele frequencies in the ABO blood group system in humans. Then we have a
situation that looks like this:

Phenotype A AB B O
Genotype(s) aa ao ab bb bo oo
No. in sample NA NAB NB NO

Now we can’t directly count the number of a, b, and o alleles. What do we do? Well,
more than 50 years ago, some geneticists figured out how with a method they called “gene
counting” [1] and that statisticians later generalized for a wide variety of purposes and called
the EM algorithm [2]. It uses a trick you’ll see repeatedly through this course. When we
don’t know something we want to know, we pretend that we know it and do some calculations
with it. If we’re lucky, we can fiddle with our calculations a bit to relate the thing that we
pretended to know to something we actually do know so we can figure out what we wanted
to know. Make sense? Probably not. But let’s try an example.

If we knew pa, pb, and po, we could figure out how many individuals with the A phenotype
have the aa genotype and how many have the ao genotype, namely

Naa = nA

(
p2a

p2a + 2papo

)

Nao = nA

(
2papo

p2a + 2papo

)
.

Obviously we could do the same thing for the B phenotype:

Nbb = nB

(
p2b

p2b + 2pbpo

)

Nbo = nB

(
2pbpo

p2b + 2pbpo

)
.

Notice that Nab = NAB and Noo = NO (lowercase subscripts refer to genotypes, uppercase
to phenotypes). If we knew all this, then we could calculate pa, pb, and po from

pa =
2Naa +Nao +Nab

2N
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pb =
2Nbb +Nbo +Nab

2N

po =
2Noo +Nao +Nbo

2N
,

where N is the total sample size.
Surprisingly enough we can actually estimate the allele frequencies by using this trick.

Just take a guess at the allele frequencies. Any guess will do. Then calculate Naa, Nao,
Nbb, Nbo, Nab, and Noo as described in the preceding paragraph.8 That’s the Expectation
part the EM algorithm. Now take the values for Naa, Nao, Nbb, Nbo, Nab, and Noo that
you’ve calculated and use them to calculate new values for the allele frequencies. That’s
the Maximization part of the EM algorithm. It’s called “maximization” because what
you’re doing is calculating maximum-likelihood estimates of the allele frequencies, given the
observed (and made up) genotype counts.9 Chances are your new values for pa, pb, and po
won’t match your initial guesses, but10 if you take these new values and start the process
over and repeat the whole sequence several times, eventually the allele frequencies you get
out at the end match those you started with. These are maximum-likelihood estimates of
the allele frequencies.11

Consider the following example:12

Phenotype A AB AB O
No. in sample 25 50 25 15

We’ll start with the guess that pa = 0.33, pb = 0.33, and po = 0.34. With that assumption
we would calculate that 25(0.332/(0.332 + 2(0.33)(0.34))) = 8.168 of the A phenotypes in
the sample have genotype aa, and the remaining 16.832 have genotype ao. Similarly, we can
calculate that 8.168 of the B phenotypes in the population sample have genotype bb, and the
remaining 16.832 have genotype bo. Now that we have a guess about how many individuals
of each genotype we have,13 we can calculate a new guess for the allele frequencies, namely
pa = 0.362, pb = 0.362, and po = 0.277. By the time we’ve repeated this process four more
times, the allele frequencies aren’t changing anymore. So the maximum likelihood estimate
of the allele frequencies is pa = 0.372, pb = 0.372, and po = 0.256.

8Chances are Naa, Nao, Nbb, and Nbo won’t be integers. That’s OK. Pretend that there really are
fractional animals or plants in your sample and proceed.

9If you don’t know what maximum-likelihood estimates are, don’t worry. We’ll get to that in a moment.
10Yes, truth is sometimes stranger than fiction.
11I should point out that this method assumes that genotypes are found in Hardy-Weinberg proportions.
12This is the default example available in the Java applet at http://darwin.eeb.uconn.edu/simulations/em-

abo.html.
13Since we’re making these genotype counts up, we can also pretend that it makes sense to have fractional

numbers of genotypes.
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What is a maximum-likelihood estimate?

I just told you that the method I described produces “maximum-likelihood estimates” for
the allele frequencies, but I haven’t told you what a maximum-likelihood estimate is. The
good news is that you’ve been using maximum-likelihood estimates for as long as you’ve been
estimating anything, without even knowing it. Although it will take me awhile to explain
it, the idea is actually pretty simple.

Suppose we had a sock drawer with two colors of socks, red and green. And suppose
we were interested in estimating the proportion of red socks in the drawer. One way of
approaching the problem would be to mix the socks well, close our eyes, take one sock from
the drawer, record its color and replace it. Suppose we do this N times. We know that the
number of red socks we’ll get might be different the next time, so the number of red socks
we get is a random variable. Let’s call it K. Now suppose in our actual experiment we find
k red socks, i.e., K = k. If we knew p, the proportion of red socks in the drawer, we could
calculate the probability of getting the data we observed, namely

P(K = k|p) =

(
N

k

)
pk(1− p)(N−k) . (4)

This is the binomial probability distribution. The part on the left side of the equation is
read as “The probability that we get k red socks in our sample given the value of p.” The
word “given” means that we’re calculating the probability of our data conditional on the
(unknown) value p.

Of course we don’t know p, so what good does writing (4) do? Well, suppose we reverse
the question to which equation (4) is an answer and call the expression in (4) the “likelihood
of the data.” Suppose further that we find the value of p that makes the likelihood bigger
than any other value we could pick.14 Then p̂ is the maximum-likelihood estimate of p.15

In the case of the ABO blood group that we just talked about, the likelihood is a bit
more complicated(

N

NANABNBNO

)(
p2a + 2papo

)NA
2pap

NAB
b

(
p2b + 2pbpo

)NB
(
p2o
)NO

(5)

This is a multinomial probability distribution. It turns out that one way to find the values
of pa, pb, and po is to use the EM algorithm I just described.16

14Technically, we treat P(K = k|p) as a function of p, find the value of p that maximizes it, and call that
value p̂.

15You’ll be relieved to know that in this case, p̂ = k/N .
16There’s another way I’d be happy to describe if you’re interested, but it’s a lot more complicated.

7



An introduction to Bayesian inference

Maximum-likelihood estimates have a lot of nice features, but likelihood is a slightly back-
wards way of looking at the world. The likelihood of the data is the probability of the data,
x, given parameters that we don’t know, φ, i.e, P(x|φ). It seems a lot more natural to think
about the probability that the unknown parameter takes on some value, given the data, i.e.,
P(φ|x). Surprisingly, these two quantities are closely related. Bayes’ Theorem tells us that

P(φ|x) =
P(x|φ)P(φ)

P(x)
. (6)

We refer to P(φ|x) as the posterior distribution of φ, i.e., the probability that φ takes on a
particular value given the data we’ve observed, and to P(φ) as the prior distribution of φ, i.e.,
the probability that φ takes on a particular value before we’ve looked at any data. Notice
how the relationship in (6) mimics the logic we use to learn about the world in everyday life.
We start with some prior beliefs, P(φ), and modify them on the basis of data or experience,
P(x|φ), to reach a conclusion, P(φ|x). That’s the underlying logic of Bayesian inference.17

Estimating allele frequencies with two alleles

Let’s suppose we’ve collected data from a population of Protea repens18 and have found 7
alleles coding for the fast allele at a enzyme locus encoding glucose-phosphate isomerase in
a sample of 20 alleles. We want to estimate the frequency of the fast allele. The maximum-
likelihood estimate is 7/20 = 0.35, which we got by finding the value of p that maximizes

P(k|N, p) =

(
N

k

)
pk(1− p)N−k ,

where N = 20 and k = 7. A Bayesian uses the same likelihood, but has to specify a prior
distribution for p. If we didn’t know anything about the allele frequency at this locus in P.
repens before starting the study, it makes sense to express that ignorance by choosing P(p)
to be a uniform random variable on the interval [0, 1]. That means we regarded all values of
p as equally likely prior to collecting the data.19

17If you’d like a little more information on why a Bayesian approach makes sense, you might want to take
a look at my lecture notes from the Summer Institute in Statistical Genetics.

18A few of you may recognize that I didn’t choose that species entirely at random, even though the “data”
I’m presenting here are entirely fanciful.

19If we had prior information about the likely values of p, we’d pick a different prior distribution to reflect
our prior information. See the Summer Institute notes for more information, if you’re interested.
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Until about 25 years ago20 it was necessary to do a bunch of complicated calculus to
combine the prior with the likelihood to get a posterior. Since the early 1990s statisticians
have used a simulation approach, Monte Carlo Markov Chain sampling, to construct numer-
ical samples from the posterior. For the problems encountered in this course, we’ll mostly
be using the freely available software package JAGS to implement Bayesian analyses. For the
problem we just encountered, here’s the code that’s needed to get our results:21

model {

# likelihood

k ~ dbin(p, N)

# prior

p ~ dunif(0,1)

}

Running this in JAGS with k = 7 and n = 20 produces these results:22

> source("binomial.R")

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 5

Initializing model

|**************************************************| 100%

Inference for Bugs model at "binomial.txt", fit using jags,

5 chains, each with 2000 iterations (first 1000 discarded)

n.sims = 5000 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff

p 0.363 0.099 0.187 0.290 0.358 0.431 0.567 1.001 3800

deviance 4.289 1.264 3.382 3.487 3.817 4.579 7.909 1.001 3100

20OK, I realize that 25 years ago was before most of you were born, but I was already teaching population
genetics then. Cut me a little slack.

21This code and other JAGS code used in the course can be found on the course web site by following the
links associated with the corresponding lecture.

22Nora will show you how to run JAGS through R in lab.
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For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)

pD = 0.8 and DIC = 5.1

DIC is an estimate of expected predictive error (lower deviance is better).

>

The column headings should be fairly self-explanatory, except for the one labeled MC

error.23 mean is the posterior mean. It’s our best guess of the value for the frequency of the
fast allele. s.d. is the posterior standard deviation. It’s our best guess of the uncertainty
associated with our estimate of the frequency of the fast allele. The 2.5%, 50%, and 97.5%
columns are the percentiles of the posterior distribution. The [2.5%, 97.5%] interval is the
95% credible interval, which is analogous to the 95% confidence interval in classical statistics,
except that we can say that there’s a 95% chance that the frequency of the fast allele lies
within this interval.24 Since the results are from a simulation, different runs will produce
slightly different results. In this case, we have a posterior mean of about 0.36 (as opposed
to the maximum-likelihood estimate of 0.35), and there is a 95% chance that p lies in the
interval [0.19, 0.57].25

Returning to the ABO example

Here’s data from the ABO blood group:26

Phenotype A AB B O Total
Observed 862 131 365 702 2060

To estimate the underlying allele frequencies, pA, pB, and pO, we have to remember how the
allele frequencies map to phenotype frequencies:27

Freq(A) = p2A + 2pApO

23If you’re interested in what MC error means, ask. Otherwise, I don’t plan to say anything about it.
24If you don’t understand why that’s different from a standard confidence interval, ask me about it.
25See the Summer Institute notes for more details on why the Bayesian estimate of p is different from

the maximum-likelihood estimate. Suffice it to say that when you have a reasonable amount of data, the
estimates are barely distinguishable. Also, don’t worry about what deviance is or what DIC means for the
moment. We’ll get to that later.

26This is almost the last time! I promise.
27Assuming genotypes are in Hardy-Weinberg proportions. We’ll relax that assumption later.
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Freq(AB) = 2pApB

Freq(B) = p2B + 2pBpO

Freq(O) = p2O .

Hers’s the JAGS code we use to estimate the allele frequencies:

model {

# likelihood

pi[1] <- p.a*p.a + 2*p.a*p.o

pi[2] <- 2*p.a*p.b

pi[3] <- p.b*p.b + 2*p.b*p.o

pi[4] <- p.o*p.o

x[1:4] ~ dmulti(pi[],n)

# priors

a1 ~ dexp(1)

b1 ~ dexp(1)

o1 ~ dexp(1)

p.a <- a1/(a1 + b1 + o1)

p.b <- b1/(a1 + b1 + o1)

p.o <- o1/(a1 + b1 + o1)

n <- sum(x[])

}

The dmulti() is a multinomial probability, a simple generalization of the binomial prob-
ability to samples when there are more than two categories. The priors are some mumbo
jumbo necessary to produce the rough equivalent of uniform [0,1] priors with more than two
alleles.28 sum() is a built-in function that saves me the trouble of calculating the sample size
and ensures that the n in dmulti() is consistent with the individual sample components.
The x=c() produces a vector of counts arranged in the same order as the frequencies in
pi[]. Here are the results:

> source("multinomial.R")

Compiling model graph

Resolving undeclared variables

Allocating nodes

28It produces a Dirichlet(1,1,1), if you really want to know.
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Graph Size: 20

Initializing model

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100%

|**************************************************| 100%

Inference for Bugs model at "multinomial.txt", fit using jags,

5 chains, each with 2000 iterations (first 1000 discarded)

n.sims = 5000 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff

p.a 0.282 0.008 0.266 0.276 0.282 0.287 0.297 1.001 5000

p.b 0.129 0.005 0.118 0.125 0.129 0.133 0.140 1.001 5000

p.o 0.589 0.008 0.573 0.584 0.589 0.595 0.606 1.001 5000

deviance 27.811 2.007 25.830 26.363 27.229 28.577 33.245 1.001 4400

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)

pD = 2.0 and DIC = 29.8

DIC is an estimate of expected predictive error (lower deviance is better).

>

Notice that the posterior means are very close to the maximum-likelihood estimates, but
that we also have 95% credible intervals so that we have an assessment of how reliable the
Bayesian estimates are. Getting them from a likelihood analysis is possible, but it takes a
fair amount of additional work.
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