American Journal of Botany Molecular phylogenetics of *Echinopsis* (Cactaceae): Polyphyly at all levels and convergent evolution of pollination modes and growth forms¹

BORIS O. SCHLUMPBERGER² AND SUSANNE S. RENNER

Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67 80638 Munich, Germany

- Premise of the study: In its current circumscription, Echinopsis with 100–150 species is one of the largest and morphologically
 most diverse genera of Cactaceae. This diversity and an absence of correlated characters have resulted in numerous attempts to
 subdivide Echinopsis into more homogeneous subgroups. To infer natural species groups in this alliance, we here provide
 a plastid phylogeny and use it to infer changes in growth form, pollination mode, and ploidy level.
- *Methods:* We sequenced 3800 nucleotides of chloroplast DNA from 162 plants representing 144 species and subspecies. The sample includes the type species of all genera close to, or included in, *Echinopsis* as well as a dense sample of other genera of the Trichocereeae and further outgroups. New and published chromosome counts were compiled and traced on the phylogeny, as were pollination modes and growth habits.
- *Key results:* A maximum likelihood phylogeny confirms that *Echinopsis* s.l. is not monophyletic nor are any of the previously recognized genera that have more than one species. Pollination mode and, to a lesser extent, growth habit are evolutionarily labile, and diploidy is the rule in *Echinopsis* s.l., with the few polyploids clustered in just a few clades.
- *Conclusions:* The use of evolutionary labile floral traits and growth habit has led to nonnatural classifications. Taxonomic realignments are required, but further study of less evolutionary labile traits suitable for circumscribing genera are needed. Surprisingly, polyploidy seems infrequent in the *Echinopsis* alliance and hybridization may thus be of minor relevance in the evolution of this clade.

Key words: Cactaceae; chromosome counts; Echinopsis; growth form evolution; phylogenetics; pollination modes; polyploidy; Trichocereeae.

Cactaceae comprise some 1870 species in 130 genera (Nyffeler and Eggli, 2010) and are estimated to have diversified since the mid-Tertiary, about 30 million years ago (Ma) (Hershkovitz and Zimmer, 1997). They are an important component of seasonally dry tropical and subtropical ecosystems, where their adaptations for water conservation and water storage permit them to survive even pronounced droughts. Different growth habits, such as columnar, globular, or barrel growth, may characterize larger species groups, but molecular-phylogenetic studies in Cactaceae have rarely addressed the evolution of growth forms (but see Hernández-Hernández et al., 2011). Similarly, floral characters and pollinator affiliation in cacti have rarely been studied in an evolutionary context, mostly for lack of large phylogenies and fieldwork on pollination biology. That polyploidy relates to diversification has been suggested for several clades of cacti (Remski, 1954; Pinkava et al., 1985;

The authors thank Stephan Beck, Grischa Brokamp, Andrea Cocucci, Roberto Kiesling, Alicia Sérsic, and Sandra Siefken for help during fieldwork; Urs Eggli, Hans Frohning, Ralf Hillmann, Cyrill Hunkeler, Martin Lowry, Jörg Piltz, Eberhard Scholz, Daniel Schweich, and Matthias Uhlig for plant material; and Martina Silber for GenBank annotations and submission of all sequences. Verena Beyer and Kerstin Schuster produced some of the sequences as part of their research at the University of Munich. The project was supported by DFG grants SCHL 1820/1-1 and 1820/1-2 and the Alexander von Humboldt Foundation.

²Author for correspondence (e-mail: boris.schlumpberger@hannoverstadt.de); present address: Herrenhausen Gardens, Herrenhäuser Str. 4, 30419 Hannover, Germany; phone: +49-511-168-47575, Cota and Philbrick, 1994; Cota and Wallace, 1995; Pinkava, 2002; Negrón-Ortiz, 2007), but again the evidence is limited due to a paucity of chromosome counts for species (or clades) of known relationships. Nevertheless, it is thought that polyploidy may be an important speciation mechanism in some Cactaceae (Negrón-Ortiz, 2007; Arakaki et al., 2007, and citations therein).

One of the least understood groups of cacti is the *Echinopsis* alliance, which includes 100–150 species that exhibit a great diversity in architecture and that variously are pollinated by bees, hummingbirds, or sphingids (Schlumpberger and Badano, 2005; Schlumpberger and Raguso, 2008; Schlumpberger et al., 2009; Walter, 2010; Ortega-Baes et al., 2011). The Echinopsis alliance belongs in the Trichocereeae (Anderson, 2001, 2005; Hunt, 2006) or Trichocereinae of a more broadly circumscribed Cereeae (Nyffeler and Eggli, 2010). The species occur from southeastern Brazil to the coast of Chile and north to northern Ecuador, with a center of species diversity in the eastern Andes of northern Argentina and Bolivia. With more than 500 species names, Echinopsis is taxonomically problematic and much in need of study of natural intraspecific variation as well as molecular phylogenetic work (Anderson, 2001; Hunt, 2006; Nyffeler and Eggli, 2010). In the broad circumscription of Hunt (2006), Echinopsis includes 18 genera, including the wellknown and species-rich Lobivia Britton & Rose and Trichocereus Riccob. Because of the problematic generic boundaries, recent studies continue to lump these difficult genera "to be conservative" (Arakaki et al., 2011: p. 8383). The 18 genera included in Echinopsis by Hunt initially were created based on traits, such as diurnal vs. nocturnal flowering, flower color, and growth form, i.e., globular vs. columnar: Thus, the name Lobivia

doi:10.3732/ajb.1100288

¹Manuscript received 22 June 2011; revision accepted 3 July 2012.

applied to mostly globular cacti from the medium to high Andes with short, diurnal flowers of various colors; *Trichocereus* was used for mostly columnar, sometimes tree-like cacti with flowers that are usually large, white, and nocturnal; and *Echinopsis* in the original sense applied to globular plants with white, funnel-shaped flowers of predominantly nocturnal anthesis. Species combining these characters were placed in separate genera, such as *Helianthocereus*, created for species of columnar habit, but with diurnal flowers (see Table 1 for a short history of *Echinopsis* taxonomy).

Here we present a densely sampled molecular phylogeny for Echinopsis that includes 144 species and subspecies, including the type species of all relevant generic names, as well as representatives of all genera in recent years assigned to the tribe Trichocereeae, again including relevant generic type species. To assess the role of chromosome number changes, we generated new counts for 37 selected taxa and added these to previous counts for a phylogenetically distributed sampling. We use these data to address the following questions: (1) Is Echinopsis in the broad sense monophyletic? (2) What is the level of variation of growth habit and pollination mode, characters that have been used to define clades in Echinopsis sensu lato? And (3) How common are ploidy changes in the Echinopsis alliance, and are they clusterd in certain subclades, perhaps indicating a role for hybridization in the evolution of certain species groups.

MATERIALS AND METHODS

Taxon sampling—Molecular phylogenies to date have included three to nine species of *Echinopsis* plus few of the potentially embedded related genera of Trichocereeae (Nyffeler, 2002; Ritz et al., 2007; Hernández-Hernández et al., 2011). We obtained tissue samples from 162 plants representing 31 genera, 129 species, 8 subspecies, and 2 varieties; 74 species belong to *Echinopsis* s.l., the remaining ones are species not previously assigned to *Echinopsis* (see Table 2 for taxonomic names and their authors, as well as information about generic type species). Our sample includes representatives of all nine infrageneric groups of *Echinopsis* defined by Friedrich and Glätzle (1983) and representatives of the 13 sections of *Lobivia* defined by Rausch (1985). We further included 54 species representing the 24 genera of the tribe Trichocereeae (Anderson, 2005), and part of the Browningieae-Cereeae-Trichocereeae (BCT) clade of Nyffeler (2002). For rooting, we chose *Neowerdermannia vorwerkii* from core Notocacteae, based on Nyffeler (2002).

Material was field-collected by the first author or obtained from documented material from public and private collections. All species identifications were made or confirmed by the first author. Vouchers are listed in Table 2.

TABLE 1. Major steps in the history of *Echinopsis* taxonomy.

Study	
Hunt, 2006	<i>Echinopsis</i> Zucc. (<i>Echinopsis</i> s.str., <i>Lobivia</i> and <i>Trichocereus</i> as artificial infrageneric groups)
Anderson, 2001, 2005	Acanthocalycium Backeb., Echinopsis Zucc. (2005: Echinopsis s.str., Lobivia and Trichocereus as artificial infrageneric groups)
Backeberg, 1958–1962	Acanthocalycium Backeb., Acantholobivia Backeb., Chamaecereus Britton & Rose, Echinopsis Zucc., Helianthocereus Backeb., Leucostele Backeb., Lobivia Britton & Rose, Pseudolobivia Backeb., Soehrensia Backeb., Trichocereus Riccob.
Britton and Rose, 1919–1923 Schumann, 1899	Chamaecereus Britton & Rose, Echinopsis Zucc., Lobivia Britton & Rose, Trichocereus Riccob. Cereus Mill. (in part), Echinopsis Zucc.

DNA extraction, amplification, sequencing, and alignments—Samples were collected from floral or vegetative tissue and silica-dried. Total genomic DNA was extracted using the NucleoSpin extraction kit (Macherey-Nagel, Düren, Germany), following the manufacturer's protocol, but with an elongated lysis step over night at 4°C.

We amplified three noncoding chloroplast DNA regions using published standard primers: the trnS-G intergenic spacer (Hamilton, 1999), the trnL region (Taberlet et al., 1991), and the rpl16 intron (Asmussen, 1999). PCR reactions were performed in 25 µL reactions (1.25 µL DNA, 0.1 µL Taq polymerase, 0.8 µL primer (10 µL), 0.5 µL 1.5 mmol/L MgCl₂, 4 µL 5× buffer, 4 µL 1.25 mmol/L dNTP, 025 µL BSA) as follows: initial denaturation was at 95°C for 5 min; followed by 35 cycles of 95°C for 30 s (denaturation), 48-55°C for 1 min (annealing) and 72°C for 2 min (elongation); and 72°C for 40 s (final extension). PCR reaction products were purified using the Wizard SV PCR clean-up kit (Promega GmbH, Mannheim, Germany). Sequencing reactions were performed with the Big Dye Terminator kit (Applied Biosystems, Warrington, UK), and cleaned with the Sephadex G-50 gel filtration system (Amersham, Uppsala, Sweden) using MultiScreen TM-HV membrane plates (Millipore, Bedford, Massachusetts, USA) according to the manufacturer's protocol. Reactions were run on an ABI 3100 Avant capillary sequencer. Sequences were edited and assembled using the program Sequencher 4.5 (Gene Codes, Ann Arbor, Michigan, USA). Sequences were aligned using Prank (Löytynoja and Goldman, 2005) and corrected by eye in the program MacClade 4.08 (Maddison and Maddison, 2003).

Phylogenetic analyses—Chloroplast partitions were first analyzed separately to check for possible contamination or mislabeling that might have led to incongruent topologies, and in the absence of statistically supported topological contradictions (defined as >70% maximum likelihood bootstrap support), all sequences were combined. Phylogenetic inference relied on maximum likelihood (ML) under the GTR + G model as implemented in the program RAxML BlackBox (Stamatakis et al., 2008, http://phylobench.vital-it.ch/raxml-bb/).

Chromosome counts—Root tips were collected from plants cultivated at the Munich Botanical Garden and immediately transferred to 2 mmol/L 8-hydroxyquinoline to arrest metaphases, then fixed in 3c:c1 ethanol–acetic acid, and stored until use at -20° C. Chromosome spreads were obtained after hydrolysis in 0.5 N hydrochloric acid at 60°C for 10 min and staining with a saturated orcein-glacial acetic acid solution. Our sampling includes species from all groups (genera) embedded in *Echinopsis* or newly revealed as closely related by our molecular data.

Pollination modes and growth forms—All species sequenced were assigned to one or several pollinator groups (bee, hummingbird, bat, or sphingid) on the basis of either our own field observations or inferred from combinations of floral traits, such as anthesis time, floral bauplan (i.e., mostly shape and length of the hypanthium), and nectar production. For growth form, we assigned species to one of two types, globular growth or columnar growth.

RESULTS

Relative frequencies of changes in pollination mode, growth architecture, and chromosome number—We generated 457 new chloroplast sequences (Table 2). The concatenated aligned matrix comprised 3866 nucleotides. Maximum likelihood analysis of these data yielded the tree shown in Fig. 1A and B, which also shows growth form (categorized as globular or columnar), pollination mode, and chromosome number. Inspection of the tree reveals many more changes in pollination modes than in growth form, and even though chromosome counts are not available for all species, polyploidy (tetraploidy) appears common in the *Oreocereus* clade and in *Weberbauerocereus*, and rare elsewhere (Fig. 1, Table 3; more about chromosome numbers in the next section). Major clades were named using oldest available genus names.

A monophyletic *Echinopsis* would need to include *Acanthocalycium* Backeb., *Arthrocereus* A.Berger, *Cephalocleistocactus* F.Ritter, *Cleistocactus* Lem. (including *Borzicactus*

 TABLE 2. Species and loci sequenced newly for this study, their sources and provenance, voucher informations, herbarium code, and GenBank accession numbers. Generic types are indicated (GT) and synonymous names are given where they are still widely used.

Species	DNA source	Geographic origin of sample or distribution	<i>trnS-trnG</i> intergenic spacer	<i>trnL-trnF</i> intergenic spacer	rpl16 intron
Acanthocalycium ferrarii Rausch Acanthocalycium glaucum F.Ritter	B.O.Schlumpberger 482 (CORD) B.O.Schlumpberger x08 (M) L & B Piltz 394	Tucuman, Argentina* Catamarca, Argentina**	JQ779438 JQ779439	JQ779600 JQ779601	JQ779744 JQ779745
Acanthocalycium spiniflorum (Schumann) Backeb, GT	B.O.Schlumpberger x07 (M)	Córdoba, Argentina**	JQ779441	JQ779603	JQ779747
Acanthocalycium spiniflorum (Schumann)	B.O.Schlumpberger 323 (CORD)	Córdoba, Argentina*	JQ779440	JQ779602	JQ779746
Acanthocalycium thionanthum	B.O.Schlumpberger 523 (CORD)	Salta, Argentina*	JQ779437	JQ779599	JQ779743
Arthrocereus rondonianus Backeb. & Voll	B.O.Schlumpberger x102 (M)	Minas Gerais, Brazil**	JQ779506	JQ779668	JQ779804
Arthrocereus spinosissimus	B.O.Schlumpberger x103 (M)	Mato Grosso, Brazil**	JQ779505	JQ779667	JQ779803
Browning a brederoof F.Ritter Browning in hertlingiana (Backeb.) Buxb. Cephalocleistocactus chrysocephalus F.Ritter GT	B.O.Schlumpberger x101 (M) B.O.Schlumpberger x111 (M)	Southern Peru La Paz, Bolivia	JQ779526 JQ779507	JQ779688 JQ779669	JQ779822 JQ779805
Cereus aethiops Haw. Cleistocactus baumannii Lem., GT Cleistocactus sepium (Kunth) F.A.C.Weber ex RolGoss. (=Borzicactus sepium (Kunth) Britton & Rose)	B.O.Schlumpberger 330 (CORD) B.O.Schlumpberger 597 (M) B.O.Schlumpberger x117 (M)	San Luis, Argentina* Córdoba, Argentina* North & central Ecuador	JQ779503 JQ779500 JQ779463	JQ779665 JQ779662 JQ779625	JQ779801 JQ779768
Cleistocactus sextonianus (Backeb.) D.R.Hunt (=Borzicactus sextonianus (Backeb.) Kimnach)	B.O.Schlumpberger x61 (M)	South & central Peru	JQ779462	JQ779624	JQ779767
Cleistocactus smaragdiflorus (F.A.C.Weber) Britton & Rose	B.O.Schlumpberger 424 (M)	Catamarca, Argentina*	JQ779499	JQ779661	JQ779798
Denmoza rhodacantha (Salm-Dyck) Britton & Rose, GT	B.O.Schlumpberger 366 (CORD)	La Rioja, Argentina*	JQ779446	JQ779608	JQ779752
Discocactus zehntneri subsp. buenekeri (W.R.Abraham) P.J.Braun & Esteves (incl. D. zehntneri subsp. boomianus Buining & Brederoo) N.P.Taylor & Zapni)	cult 08/2533 B.O.Schlumpberger x113 BGM	Bahia, Brazil	JQ779511	JQ779673	JQ779809
Echinopsis ancistrophora Speg.	B.O.Schlumpberger 152 (CORD)	Salta, Argentina*	JQ779367	JQ779529	JQ779691
Echinopsis ancistrophora Speg.	B.O.Schlumpberger 96 (CORD, M)	Jujuy, Argentina*	JQ779368	JQ779530	JQ779692
Echinopsis cf. ancistrophora Speg.	B.O.Schlumpberger x133 (M)	unknown	JQ779369	JQ779531	JQ779693
Echinopsis angelesiae (R.Kiesling) G.D.Rowley	B.O.Schlumpberger 383 (CORD)	Salta, Argentina*	JQ779413	JQ779575	JQ779725
Echinopsis arachnacantha (Buining & F.Ritter) H.Friedrich	B.O.Schlumpberger 656 (LPB)	Santa Cruz, Bolivia*	JQ779400	JQ779562	JQ779714
<i>Echinopsis atacamensis</i> subsp. <i>pasacana</i> (F.A.C.Weber) G.Navarro	B.O.Schlumpberger 518 (CORD)	Catamarca, Argentina*	JQ779486	JQ779648	
<i>Echinopsis atacamensis</i> subsp. <i>pasacana</i> (F.A.C.Weber) G.Navarro	B.O.Schlumpberger 593 (CORD)	Tucuman, Argentina*	JQ779487	JQ779649	JQ779787
<i>Echinopsis aurea</i> Britton & Rose <i>Echinopsis aurea</i> Britton & Rose <i>Echinopsis aurea</i> Britton & Rose	B.O.Schlumpberger 309 (CORD) B.O.Schlumpberger 313 (CORD) B.O.Schlumpberger x29 (M) W.Rausch 116 (<i>E. leucomalla</i> (Wessner) H.Friedrich)	Córdoba, Argentina* Córdoba, Argentina* San Luis, Argentina**	JQ779472 JQ779471 JQ779475	JQ779634 JQ779633 JQ779637	JQ779776 JQ779775
Echinopsis aurea subsp. fallax (Oehme) M.Lowry	B.O.Schlumpberger x05 (M) J. & B.Piltz 137	La Rioja, Argentina**	JQ779474	JQ779636	
Echinopsis aurea subsp. shaferi (Britton & Rose) M.Lowry	B.O.Schlumpberger x100 (M) C.Hunkeler 300	Catamarca, Argentina**	JQ779473	JQ779635	JQ779777
<i>E. aurea</i> var. <i>callochrysea</i> (F.Ritter) J.Ullmann	B.O.Schlumpberger 384 (CORD)	Salta, Argentina*	JQ779476	JQ779638	JQ779778
Echinopsis backebergii Werderm.	B.O.Schlumpberger x33 (M) F.Ritter 1312 (<i>Lobivia winteriana</i> F.Ritter)	Huancavelica, Peru**	JQ779386	JQ779548	JQ779703
Echinopsis backebergii Werderm.	B.O.Schlumpberger x65 (M) W.Rausch 407 (Lobivia zecheri Rausch)	Ayacucho, Peru**	JQ779387	JQ779549	
Echinopsis bonnieae (Halda, Hogan & Janeba) Halda & Malina	B.O.Schlumpberger x127 (M)	Catamarca, Argentina	JQ779502	JQ779664	JQ779800
Echinopsis boyuibensis F.Ritter Echinopsis breviflora (Backeb.) M.Lowry (= Lobivia sanguiniflora var. breviflora (Backeb.) Rausch)	B.O.Schlumpberger 301 (M) B.O.Schlumpberger x80 (M)	Santa Cruz, Bolivia* Salta, Argentina	JQ779371 JQ779469	JQ779533 JQ779631	JQ779773

_

TABLE 2. Continued.

		Geographic origin of sample or	<i>trnS-trnG</i> intergenic	<i>trnL-trnF</i> intergenic	
Species	DNA source	distribution	spacer	spacer	rpl16 intron
Echinopsis bridgesii subsp. vallegrandensis (Cárdenas) M.Lowry	B.O.Schlumpberger 657 (LPB)	Cochabamba, Bolivia	JQ779403	JQ779565	JQ779717
Echinopsis bridgesii subsp. vallegrandensis (Cárdenas) M.Lowry	B.O.Schlumpberger 691 (LPB)	Santa Cruz, Bolivia*	JQ779404	JQ779566	JQ779718
Echinopsis bruchii (Britton & Rose) A.Cast. & H.V.Lelong	B.O.Schlumpberger x106 (M)	Northwestern Argentina	JQ779422	JQ779584	JQ779731
Echinopsis caineana (Cárdenas) D.R.Hunt	B.O.Schlumpberger x125 (M) W.Rausch 197	Cochabamba, Bolivia**	JQ779402	JQ779564	JQ779716
Echinopsis calliantholilacina Cárdenas	B.O.Schlumpberger x13 (M) W.Rausch 63	Chuquisaca, Bolivia**	JQ779381	JQ779543	
Echinopsis callichroma Cárdenas	B.O. Schlumpberger x24 (M) W.Rausch 461	Cochabamba, Bolivia**	JQ779380	JQ779542	
Echinopsis calochlora K.Schum.	B.O.Schlumpberger x10 (M)	Southwestern Brazil, east Bolivia	JQ779485	JQ779647	JQ779786
Echinopsis calorubra Cárdenas	B.O.Schlumpberger x90 (M)	South-central Bolivia	JQ779382	JQ779544	JQ779699
Echinopsis calorubra Cárdenas	B.O.Schlumpberger x128 (M) W.Rausch 463 (<i>Lobivia mizquensis</i> Rausch)	Cochabamba, Bolivia**	JQ779383	JQ779545	JQ779700
<i>Echinopsis candicans</i> (Gillies ex Salm-Dyck) D.R.Hunt	B.O.Schlumpberger 348C (CORD)	Córdoba, Argentina*	JQ779411	JQ779573	JQ779723
<i>Echinopsis candicans</i> (Gillies ex Salm-Dyck) D.R.Hunt	B.O.Schlumpberger 332 (CORD)	San Luis, Argentina*	JQ779412	JQ779574	JQ779724
Echinopsis cardenasiana (Rausch) H.Friedrich	B.O.Schlumpberger x116 (M) W.Rausch 498	Tarija, Bolivia**	JQ779370	JQ779532	
<i>Echinopsis chamaecereus</i> H.Friedrich & Glaetzle (= <i>Chamaecereus silvestrii</i> (Speg.) Britton & Rose)	B.O.Schlumpberger x37 (M)	Supposedly Salta/ Tucuman, Argentina	JQ779434	JQ779596	
Echinopsis chiloensis (Colla) H.Friedrich & G.D.Rowley	B.O.Schlumpberger x77 (M)	Chile*	JQ779489	JQ779651	JQ779789
Echinopsis chrysantha Werderm.	B.O.Schlumpberger x83 (M) W.Rausch 5	Salta, Argentina**	JQ779470	JQ779632	JQ779774
Echinopsis chrysochete Werderm. Echinopsis chrysochete Werderm.	B.O.Schlumpberger 576A (CORD) B.O.Schlumpberger 577 (CORD) (<i>Lobivia chrysochete</i> var. <i>minutiflora</i> (Rausch))	Salta, Argentina*	JQ779394 JQ779395	JQ779556 JQ779557	JQ779709
Echinopsis cinnabarina (Hook.) Labor. Echinopsis coronata Cárdenas	B.O.Schlumpberger 706 (LPB) V.Beyer & B.O.Schlumpberger x30 (M) W.Rausch 613	Santa Cruz, Bolivia* Santa Cruz, Bolivia**	JQ779390 JQ779372	JQ779552 JQ779534	JQ779706
<i>Echinopsis crassicaulis</i> (Backeb. ex R.Kiesling) H.Friedrich & Glaetzle	B.O.Schlumpberger x23 (M)	Catamarca, Argentina	JQ779418	JQ779580	
Echinopsis densispina Werderm.	cult N/2956 B.O.Schlumpberger x107 BGM	Salta, Argentina**	JQ779482	JQ779644	JQ779784
Echinopsis famatimensis (Speg.) Werderm.	B.O.Schlumpberger x48 (M)	La Rioja, San Juan, Argentina	JQ779501	JQ779663	JQ779799
Echinopsis ferox (Britton & Rose) Backeb.	B.O.Schlumpberger 563 (CORD)	Jujuy, Argentina*	JQ779384	JQ779546	JQ779701
Echinopsis formosa (Pfeiff.) Jacobi ex Salm-Dyck subsp. korethroides (Werderm.) M.Lowry	B.O.Schlumpberger 390 (CORD)	Salta, Argentina*	JQ779420	JQ779582	
Echinopsis formosa (Pfeiff.) Jacobi ex Salm-Dyck	B.O.Schlumpberger 460 (CORD)	La Rioja, Argentina*	JQ779420	JQ779583	JQ779730
Echinopsis haematantha (Speg.) D.R.Hunt	B.O.Schlumpberger 175 (CORD)	Salta, Argentina*	JQ779480	JQ779642	JQ779782
Echinopsis haematantha (Speg.) D.K.Hunt	B.O.Schlumpberger 493 (CORD)	Salta, Argentina*	JQ779481	JQ779643	JQ//9/83
Echinopsis hertrichiana (Backeb.) D.R.Hunt	B.O.Schlumpberger x34 (M) W.Rausch 414	Cuzco, Peru**	JQ779396	JQ779558	JQ779710
Echinopsis huascha (F.A.C.Weber) H.Friedrich & G.D.Rowley	B.O.Schlumpberger 374 (CORD)	La Rioja, Argentina*	JQ779409	JQ779571	JQ779721
<i>Echinopsis huascha</i> (F.A.C.Weber) H.Friedrich & G.D.Rowley	B.O.Schlumpberger 351 (CORD)	La Rioja, Argentina*	JQ779408	JQ779570	
Echinopsis huascha subsp. robusta (Rausch) M.Lowry	B.O.Schlumpberger 519 (CORD)	Catamarca, Argentina*	JQ779410	JQ779572	JQ779722
Echinopsis jajoiana (Backeb.) Blossf.	B.O.Schlumpberger x88 (M) W.Rausch 213	Jujuy, Argentina**	JQ779467	JQ779629	JQ779771
Echinopsis jajoiana (Backeb.) Blossf.	B.O.Schlumpberger x79 (M) W.Rausch 815 (<i>Lobivia jajoiana</i>	Jujuy, Argentina**	JQ779468	JQ779630	JQ779772
Echinopsis lageniformis (C.F.Först.) H.Friedrich & G.D.Rowley	var. <i>fleischeriana</i> Backeb.) B.O.Schlumpberger x39 (M)	Bolivia	JQ779449	JQ779611	JQ779755

TABLE 2. Continued.

See	Geographic origin of sample or distribution		<i>trnS-trnG</i> intergenic	<i>trnL-trnF</i> intergenic	rn116 intron	
species	DINA source	distribution	spacer	spacer	rpi10 intron	
<i>Echinopsis lamprochlora</i> (Lem.) F.A.C.Weber ex H.Friedrich & Glaetzle	B.O.Schlumpberger 318 (CORD)	Córdoba, Argentina*	JQ779416	JQ779578	JQ779728	
Echinopsis lateritia Gürke	B.O.Schlumpberger x126 (M) W.Rausch 490	Chuquisaca, Bolivia**	JQ779398	JQ779560	JQ779712	
<i>Echinopsis leucantha</i> (Gillies ex Salm-Dyck) Walp.	B.O.Schlumpberger 324 (CORD)	Córdoba, Argentina*	JQ779443	JQ779605	JQ779749	
<i>Echinopsis leucantha</i> (Gillies ex Salm-Dyck) Walp.	B.O.Schlumpberger 329 (CORD)	San Luis, Argentina*	JQ779444	JQ779606	JQ779750	
<i>Echinopsis leucantha</i> (Gillies ex Salm-Dyck) Walp.	B.O.Schlumpberger 382C (CORD)	Catamarca, Argentina*	JQ779442	JQ779604	JQ779748	
Echinopsis lobivioides Backeb.	B.O.Schlumpberger 422 (CORD)	Catamarca, Argentina*	JQ779419	JQ779581	JQ779729	
Echinopsis mamillosa Gürke Echinopsis marsoneri Werderm.	B.O.Schlumpberger x38 (M) B.O.Schlumpberger x94 (M) D.Hardy 373	South Bolivia Jujuy, Argentina**	JQ779401 JQ779466	JQ779563 JQ779628	JQ779715 JQ779770	
<i>Echinopsis maximiliana</i> Heyder ex A.Dietr. <i>Echinopsis mirabilis</i> Speg.	B.O.Schlumpberger 621A (LPB) V.Beyer & B.O.Schlumpberger x35 (M)	La Paz, Bolivia* Dry Chaco, Argentina	JQ779391 JQ779445	JQ779553 JQ779607	JQ779707 JQ779751	
<i>Echinopsis obrepanda</i> (Salm-Dyck) K.Schum.	B.O.Schlumpberger x132 (M)	Bolivia	JQ779376	JQ779538	JQ779695	
<i>Echinopsis obrepanda</i> (Salm-Dyck) K.Schum.	B.O.Schlumpberger 629A (LPB)	Cochabamba, Bolivia*	JQ779377	JQ779539	JQ779696	
Echinopsis obrepanda K.Schum.	B.O.Schlumpberger 686A (LPB)	Santa Cruz, Bolivia*	JQ779375	JQ779537	JQ779694	
Echinopsis obrepanda K.Schum.	B.O.Schlumpberger 713A (LPB)	Santa Cruz, Bolivia*	JQ779379	JQ779541	JQ779698	
Echinopsis oligotricha (Cárdenas) M.Lowry	B.O.Schlumpberger 638 (LPB)	Cochabamba, Bolivia*	JQ779397	JQ779559	JQ779711	
Echinopsis oxygona (Link) Zucc.	B.O.Schlumpberger x01 (M) N.Gerloff 114	Rio Grande do Sul, Brazil**	JQ779483	JQ779645	10770705	
Echinopsis oxygona (Link) Zucc.	B.O.Schlumpberger x06 (M) L.Bercht 892	Rio Grande do Sul, Brazil**	JQ779484	JQ779646	JQ//9/85	
H.Friedrich & G.D.Rowley	B.O.Schlumpberger 721 (LPB)	Santa Cruz, Bonvia ^{**}	JQ779451	JQ779613	JQ719757	
H.Friedrich & G.D.Rowley	B.O.Schlumpberger X/8 (M)	Ecuador, Peru	JQ779450	JQ779550	JQ779756	
Echinopsis pentanali Salii-Dyck	B.O.Schlumpberger v05 (M)	La Paz, Dollvia ^{**}	JQ779388	JQ779550	JQ779704	
Echinopsis pereziensis Cárdonas	K.Knize 933 B.O. Schlumpherger x32 (M)	Coobabamba Polivia	JQ779400	JQ779536	JQ//9/19	
Echinopsis pugionacantha Rose & Boed	B O Schlumpberger 566 (CORD)	Luiuv Argentina*	JQ779374	JQ779530	10779702	
Echinopsis pagionacanna Rose & Boea. Echinopsis rojasij Cárdenas	B O Schlumpberger 647 (LPB)	Santa Cruz, Bolivia*	JQ779378	10779540	10779697	
<i>Echinopsis roylasii</i> Cardenas <i>Echinopsis rowleyi</i> H.Friedrich (<i>= Lobivia grandiflora</i> Britton & Rose)	B.O.Schlumpberger 391 (CORD)	Catamarca, Argentina*	JQ779417	JQ779579	32117071	
Echinopsis saltensis Speg.	B.O.Schlumpberger x50 (M)	Salta & Tucuman, Argentina	JQ779435	JQ779597	JQ779741	
Echinopsis saltensis Speg.	B.O.Schlumpberger 163B (CORD)	Salta, Argentina*	JQ779436	JQ779598	JQ779742	
Echinopsis schickendantzii F.A.C.Weber	B.O.Schlumpberger 538 (CORD)	Jujuy, Argentina*	JQ779423	JQ779585		
Echinopsis schieliana F.A.C.Weber	B.O.Schlumpberger x124 (M) W.Rausch 205 (<i>Lobivia schieliana</i> vor <i>auiabavansis</i> (Pausch) Pausch)	La Paz, Bolivia**	JQ779392	JQ779554	JQ779708	
Echinopsis schreiteri (A Cast.) Werderm	B O Schlumpberger 227 (CORD)	Tucuman, Argentina*	10779433	10779595	IO779740	
Echinopsis smrziana Backeb.	B.O.Schlumpberger x02 (M) J. & B.Piltz 177A	Salta, Argentina**	JQ779432	JQ779594	JQ779739	
Echinopsis sp.	B.O.Schlumpberger 652 (LPB)	Santa Cruz, Bolivia*	JQ779754	JQ779448	JQ779610	
Echinopsis sp.	B.O.Schlumpberger 717 (LPB)	Cochabamba, Bolivia*	JQ779753	JQ779447	JQ779609	
Echinopsis strigosa (Salm-Dyck) H.Friedrich & G.D.Rowley	B.O.Schlumpberger 343 (CORD)	La Rioja, Argentina*	JQ779414	JQ779576	JQ779726	
Echinopsis subdenudata Cárdenas	B.O.Schlumpberger x25 (M)	Tarija, Bolivia	JQ779373	JQ779535		
Echinopsis sucrensis Cárdenas	B.O.Schlumpberger x41 (M) W.Rausch 483	Potosí, Bolivia**	JQ779405	JQ779567		
Echinopsis tacaquirensis (Vaupel) H.Friedrich & G.D.Rowley	B.O.Schlumpberger 118 (CORD, M)	Potosí, Bolivia*	JQ779407	JQ779569	JQ779720	
Echinopsis tarijensis (Vaupel) H.Friedrich & G.D.Rowley	B.O.Schlumpberger 562 (CORD)	Jujuy, Argentina*	JQ779430	JQ779592	JQ779738	
Echinopsis tarijensis subsp. bertramiana (Backeb.) M.Lowry	B.O.Schlumpberger 631 (LPB)	Cochabamba, Bolivia*	JQ779428	JQ779590	JQ779736	
Echinopsis tegeleriana (Backeb.) D.R.Hunt	B.O.Schlumpberger x66 (M) W.Rausch 443	Ayacucho, Peru**	JQ779393	JQ779555		
<i>Echinopsis terscheckii</i> (Parmentier ex Pfeiff.) H.Friedrich & G.D.Rowley	B.O.Schlumpberger 354 (CORD)	La Rioja, Argentina*	JQ779488	JQ779650	JQ779788	

_

TABLE 2. Continued.

Species	DNA source	Geographic origin of sample or	trnS-trnG intergenic	trnL-trnF intergenic	m116 intron
Species			spacer	spacer	
Echinopsis thelegona (F.A.C.Weber) H.Friedrich & G.D.Rowley Echinopsis thelegonoides (Speg.)	B.O.Schlumpberger 208 (CORD, M) B.O.Schlumpberger 543 (CORD)	Salta, Argentina*	JQ779415 JO779427	JQ779577	JQ779727 JO779735
H.Friedrich & G.D.Rowley <i>Echinopsis tiegeliana</i> (Wessner) D.R.Hunt	V.Bever & B.O.Schlumpberger x82 (M)	Tarija, Bolivia**	JO779389	JO779551	JO779705
Echinopsis tubiflora (Pfeiff) Zucc. ex	W.Rausch 323 B O Schlumpberger 106 (CORD)	Tucuman, Argentina*	10779479	10779641	10779781
K.Schum. <i>Echinopsis tubiflora</i> (Pfeiff.) Zucc. ex	B.O.Schlumpberger 386 (CORD)	Salta, Argentina*	JQ779477	JQ779639	JQ779779
K.Schum. Echinopsis tubiflora (Pfeiff.) Zucc. ex	B.O.Schlumpberger 387 (CORD)	Salta, Argentina*	JQ779478	JQ779640	JQ779780
K.Schum. Echinopsis vasquezii (Rausch)	B.O.Schlumpberger 722 (LPB)	Santa Cruz, Bolivia*	JQ779425	JQ779587	JQ779733
G.D.Rowley Echinopsis vasquezii (Rausch)	B.O.Schlumpberger x86 (M)	Cochabamba/ Santa Cruz,	JQ779424	JQ779586	JQ779732
G.D.Rowley Echinopsis volliana (Backeb.)	B.O.Schlumpberger 635 (LPB)	Bolivia Cochabamba, Bolivia*	JQ779429	JQ779591	JQ779737
H.Friedrich & G.D.Rowley <i>Echinopsis walteri</i> R.Kiesling (H Eriedrich & Glastzle)	B.O.Schlumpberger x11 (M)	Salta, Argentina**	JQ779431	JQ779593	
<i>Echinopsis yuquina</i> D.R.Hunt (incl.	J. & B.FHIZ 177 B.O.Schlumpberger x81 (M) F.Ritter 807	Chuquisaca, Bolivia**	JQ779399	JQ779561	JQ779713
<i>Espostoa guentheri</i> (Kupper) Buxb. ex Eggli (= <i>Vatricania guentheri</i> (Kupper) Backeb. GT)	B.O.Schlumpberger x70 (M)	Central Bolivia	JQ779495	JQ779657	JQ779795
<i>Espostoa lanata</i> (Kunth) Britton & Rose, GT	B.O.Schlumpberger x54 (M)	North Peru, south Ecuador	JQ779454	JQ779616	JQ779760
Espostoopsis dybowskii (RolGoss.) Buxb., GT	B.O.Schlumpberger x112 (M)	Bahia, Brazil	JQ779509	JQ779671	JQ779807
Facheiroa ulei (Gürke) Werderm., GT Gymnocalycium andreae (Boed.) Backeb.	B.O.Schlumpberger x109 (M) B.O.Schlumpberger x84 (M)	Bahia, Brazil Córdoba & San Luis, Argentina	JQ779527 JQ779512	JQ779689 JQ779674	JQ779810
<i>Gymnocalycium mostii</i> (Gürke) Britton & Rose	B.O.Schlumpberger 305 (CORD)	Córdoba, Argentina*	JQ779513	JQ779675	JQ779811
Haageocereus pseudomelanostele (Werderm. & Backeb.) Backeb., GT	B.O.Schlumpberger x56 (M)	Central Peru	JQ779456	JQ779618	JQ779762
Harrisia gracilis (Miller) Britton, GT	B.O.Schlumpberger x120 (M)	Jamaica	JQ779492	JQ779654	JQ779792
Harrisia martinii (Labor.) Britton & Rose	B.O.Schlumpberger x58 (M)	Argentina, Paraguay	JQ779493	JQ779655	JQ779793
Harrisia pomanensis (F.A.C.Weber) Britton & Rose	B.O.Schlumpberger 119 (CORD)	Salta, Argentina*	JQ779491	JQ779653	JQ779791
Harrisia tetracantha (Labor.) D.R.Hunt Harrisia tortuosa (J.Forbes ex Otto & A.Dietr.) Britton & Rose	B.O.Schlumpberger 643 (LPB) B.O.Schlumpberger x53 (M)	Cochabamba, Bolivia* Argentina, Uruguay, Paraguay: Bolivia?	JQ779490 JQ779494	JQ779652 JQ779656	JQ779790 JQ779794
Lasiocereus fulvus F.Ritter	B.O.Schlumpberger x59 (M)	Amazonas, Peru	JQ779525	JQ779687	JQ779821
Leocereus bahiensis Britton & Rose, GT Matucana haynei (Otto ex Salm-Dyck)	Eggli 1283 (ZSS) B.O.Schlumpberger x118 (M)	Bahia, Brazil* Peru	JQ779510 JQ779460	JQ779672 JQ779622	JQ779808 JQ779765
Britton & Rose, GT	P.O. Sahlumphargar v 110 (M)	Dom	10770450	10770621	
Backeb.) Mottram (incl. <i>Matucana</i> multicolor Rauh & Backeb.)	B.O.Schlumpoerger X119 (M)	reiu	JQ779439	JQ779021	
Matucana intertexta F.Ritter	B.O.Schlumpberger x60 (M)	Peru	JO779458	JQ779620	JQ779764
Micranthocereus densiflorus Buining & Brederoo	B.O.Schlumpberger x69 (M)	Bahia, Brazil	JQ779524	JQ779686	JQ779820
Mila caespitosa Britton & Rose, GT Neowerdermannia vorwerkii Frič, GT	B.O.Schlumpberger x47 (M) B.O.Schlumpberger x74 (M)	Central Peru Northern Argentina & Bolivia	JQ779457 JQ779528	JQ779619 JQ779690	JQ779763 JQ779823
Oreocereus celsianus (Lem. ex Salm-Dyck) Riccob., GT	B.O.Schlumpberger 569 (CORD)	Jujuy, Argentina*	JQ779464	JQ779626	JQ779769
Oreocereus trollii (Kupper) Backeb. Oroya peruviana (K.Schum.)	B.O.Schlumpberger 559 (CORD) B.O.Schlumpberger x99 (M)	Jujuy, Argentina* Central Peru	JQ779465 JQ779461	JQ779627 JQ779623	JQ779766
Britton & Rose, GT Praecereus euchlorus E A C Wahar (N PTc://cc)	B.O.Schlumpberger 700 (LPB)	Santa Cruz, Bolivia*	JQ779504	JQ779666	JQ779802
Pygmaeocereus bieblii var. kuehhasii Diers Pygmaeocereus bylesianus Andreae &	B.O.Schlumpberger x46 (M) B.O.Schlumpberger x115 (M)	Central Peru Southern Peru	JQ779452 JQ779453	JQ779614 JQ779615	JQ779758 JQ779759
Backeb., GT Rauhocereus riosaniensis Backeb., GT	B.O.Schlumpberger x110 (M)	Northern Peru	JQ779455	JQ779617	JQ779761

TABLE 2. Continued.

		Geographic origin	trnS-trnG	trnL-trnF	
		of sample or	intergenic	intergenic	
Species	DNA source	distribution	spacer	spacer	rpl16 intron
Rebutia arenacea Cárdenas (= Sulcorebutia arenacea (Cárdenas) F.Ritter)	B.O.Schlumpberger x76 (M)	Cochabamba, Bolivia	JQ779522	JQ779684	
Rebutia atrovirens (Backeb.) Pilbeam (= Mediolobivia atrovirens (Backeb.) Backeb., incl. Rebutia pygmaea (R.E.Fr.) Britton & Rose)	B.O.Schlumpberger x71 (M) H.Joschko 75	Jujuy, Argentina**	JQ779517	JQ779679	JQ779815
Rebutia fabrisii Rausch	B.O.Schlumpberger x104 (M) W.Rausch 688	Salta, Argentina**	JQ779516	JQ779678	JQ779814
Rebutia haagei Fric & Schelle (incl. Mediolobivia pygmaea (R.E.Fr.) Krainz, Rebutia pygmaea (R.E.Fr.) Britton & Rose)	B.O.Schlumpberger x75 (M) W.Rausch 333	Jujuy, Argentina**	JQ779519	JQ779681	JQ779817
Rebutia heliosa Rausch	B.O.Schlumpberger x97 (M) A.B.Lau 405	Tarija, Bolivia**	JQ779520	JQ779682	JQ779818
Rebutia margarethae Rausch (R. padcayensis Rausch)	B.O.Schlumpberger x73 (M) A.B.Lau 550	Jujuy/Salta, Argentina**	JQ779514	JQ779676	JQ779812
Rebutia minuscula K.Schum., GT	B.O.Schlumpberger x108 (M)	Northern Argentina	JQ779515	JQ779677	JQ779813
Rebutia muscula F.Ritter & Thiele ex F.Ritter (= Aylostera muscula (F.Ritter & Thiele ex F.Ritter) Backeb.; incl. Rebutia fiebrigii (Gürke) Britton & Rose)	B.O.Schlumpberger x98 (M) F.Ritter 753	Tarija, Bolivia**	JQ779521	JQ779683	JQ779819
Rebutia neocumingii (Backeb.) D.R.Hunt (Weingartia neocumingii Backeb.)	B.O.Schlumpberger x72 (M)	Bolivia, south-central Andes	JQ779523	JQ779685	
Rebutia pygmaea (R.E.Fr.) Britton & Rose (= Mediolobivia pygmaea (R.E.Fr.) Krainz)	B.O.Schlumpberger & G.Brokamp 670 (M)	Oruro, Bolivia*	JQ779518	JQ779680	JQ779816
Samaipaticereus corroanus Cárdenas, GT	B.O.Schlumpberger 720 (LPB)	Santa Cruz, Bolivia*	JO779498	JO779660	
Stetsonia coryne (Salm-Dyck) Britton & Rose, GT	B.O.Schlumpberger x57 (M)	Chaco of Argentina, Bolivia and Paraguay	JQ779508	JQ779670	JQ779806
Weberbauerocereus weberbaueri (K.Schum. ex Vaupel) Backeb., GT	B.O.Schlumpberger x55 (M)	Southwestern Peru	JQ779496	JQ779658	JQ779796
Yungasocereus inquisivensis (Cárdenas) F.Ritter ex Eggli, GT	B.O.Schlumpberger x121 (M)	Bolivia	JQ779497	JQ779659	JQ779797

Notes: * wild-collected, ** samples from cultivated plants of documented origin

Riccob.), Denmoza Britton & Rose, Espostoa Britton & Rose (including Vatricania Backeb.), Haageocereus Backeb., Harrisia Britton, Matucana Britton & Rose, Mila Britton & Rose, Oreocereus (A.Berger) Riccob., Oroya Britton & Rose, Pygmaeocereus H.Johnson & Backeb., Rauhocereus Backeb., Samaipaticereus Cárdenas, Weberbauerocereus Backeb., and Yungasocereus F.Ritter, all of which are part of a well-supported clade (100% bootstrap support) interspersed with species of Echinopsis (Fig. 1A, B). Species previously assigned to Lobivia, i.e., species with diurnal flowers, Trichocereus, i.e., columnar species, or Echinopsis s.str., i.e., globular species with funnel-shaped flowers of nocturnal anthesis, do not form clades. The genera Espostoa, Cleistocactus s.l. (i.e., sensu Hunt, 1999, 2006) and Matucana are polyphyletic (Fig. 1), and Acanthocalycium is paraphyletic since Echinopsis leucantha is embedded among its species. Our sampling also reveals a few taxonomic problems at the species level: thus, E. aurea is polyphyletic, with the isolated northernmost form (E. aurea var. callochrysea) close to E. tubiflora.

Chromosome numbers—Table 3 lists new chromosome counts for numerous *Echinopsis* (sub) species or varieties included in the phylogeny as well as for 11 outgroup species from eight genera. The basic chromosome number is 2x = 22. We discovered six cases of tetraploidy of which two involve intraspecific variation between diploidy and tetraploidy. In

the *Helianthocereus* clade, tetraploids occurred in *E. thelegonoides* and *E. candicans* (Fig. 1B). In the *Lobivia* clade, we found diploids and tetraploids in *E. tiegeliana*, and in the *Oreocereus* clade we found tetraploids in *Espostoa* and *Oreocereus* itself (Fig. 1, Table 3). In *Rebutia* K.Schum., we found tetraploidy in a species previously assigned to *Mediolobivia* Backeb.

DISCUSSION

We now address the main questions posed in this study, namely (1) Is *Echinopsis* in the broad sense monophyletic? (2) What is the level of plasticity of growth habit and pollination mode, characters that have been used to define clades in *Echinopsis* sensu lato? And (3) How common are ploidy changes in the *Echinopsis* alliance and are they clustered in certain subclades?

Monophyly of Echinopsis sensu lato—Echinopsis as circumscribed by Anderson (2001) or Hunt (2006) would become monophyletic with the inclusion of *Acanthocalycium* (part of *Echinopsis* in Hunt, 2006, but not in Anderson, 2001 and 2005), *Arthrocereus, Cephalocleistocactus, Cleistocactus* (including *Borzicactus*), *Denmoza, Espostoa* (including *Vatricania*), *Haageocereus, Harrisia, Matucana, Mila, Oreocereus*,

Fig. 1. (A, B). Maximum likelihood (ML) phylogram for 144 taxa of *Echinopsis* and relatives obtained from 3866 aligned nucleotides of chloroplast DNA. Numbers at nodes indicate ML bootstrap support >70% from 100 replicates. Known or putative pollinators are indicated by pie diagrams, with the color codes explained in the inset; sphingid-adapted taxa with bees as backup pollinators are treated as sphingid-pollinated. Growth form is indicated by different taxon name colors as explained in the inset. New or previously published chromosome counts are shown as follows: Bold numbers indicate counts that were made from the same plant as was sequenced; numbers in parentheses refer to counts made from a closely related taxon; the remaining numbers refer to counts from the same taxon but not the sequenced individual (see Table 2 for sources). Collection numbers behind plant names refer to vouchers cited in Table 1; they are given only for species represented by multiple accessions.

Fig. 1. Continued.

TABLE 3. Chromosome numbers in *Echinopsis* and related Trichocereeae. Authors for taxon names can be found in Table 1, except for taxa not sequenced for which they are listed here. Abbreviations: BGM—Botanical Garden Munich. Collectors' acronyms are BOS: B. O. Schlumpberger, DH: D. Herzog, ES: E. Scholz, FR: F. Ritter, GF: N. Gerloff, HJW: H. J. Wittau, HUN: C. Hunkeler, KK: K. Kniže, LB: L. Bercht, LK: L. Kunte, MN: M. Winberg, P: J. & B. Piltz, UE: U. Eggli, WR: W. Rausch, and many individual collections are also cited in Table 1. Details for those not cited there are available online under http://ralph.cs.cf.ac.uk/cacti/fieldno.html.

Species	Infraspecific taxa and synonyms	2 <i>n</i>	No. of counts	Origin of material studied or reference
Eechinopsis ancistrophora		22	8	BGM: BOS96, P231, MN125, ES80
E. aurea		22	3	BGM: BOS313
E. aurea	<i>E. aurea</i> Britton & Rose var. <i>albiflora</i> (Rausch) J.Ullmann	22	5	BGM: BOS596
E. aurea	Lobivia cylindracea Backeb.	22	?	Diers, 2008a
E. backebergii Werderm, subsp.		44	?	Diers, 2008a
wrightiana (Backeb.) M.Lowry				
E. bridgesii subsp. vallegrandensis	E. cotacajesij Cárdenas	22	5	BGM: WR604
E. bridgesii subsp. vallegrandensis	E. cochabambensis Backeb.	22?	?	Diers, 2008a
E. bruchii		22	?	Diers, 2008a
E. calliantholilacina		22	3	BGM: WR63
E. callichroma		22	3	BGM: WR461
E. calochlora		22	?	Diers, 2008a
E. calorubra	E. rauschii Friedrich var. megalocephala Rausch	22	5	BGM: WR272
E. candicans		22	5	BGM: BOS404
E. candicans		22/44	17	BGM: BOS380
E. candicans		44	27	BGM: BOS328
E. candicans		44	?	Las Peñas et al., 2009
E. chamaecereus	Chamaecereus silvestrii	22	?	Ross. 1981
E. chiloensis		22	3	BGM: BOSx77
E chiloensis		22	2	Katagiri, 1952
E chrvsochete		22	5	BGM: BOS576
E chrysochete	Lohivia minutiflora	22	4	BGM: BOS577
E cinnabarina	Lobivia nseudocinnabarina Backeb	22	?	Diers 2008a
E coronata	Looivia pseudoennidoarnia Baekeo.	22	?	Diers 2008a
E crassicaulis		22	9	BGM: BOSy23
F densisnina		22	3	BGM: ES31 ES37
E. deserticola	Trichocorous fubrilanus E Ritter	22	2	Diers 2008a
E famatimonsis	Lohivia nectinifera Wessner	22	· 9	Diers 2008a
E formosa	E formosa subsp. formosa	22	2	BGM: BOS/60
E. formosa E. formosa	<i>E. formosa</i> (Pfeiff.) Jacobi ex Salm-Dyck subsp. <i>rosariogna</i> (Rausch) M Lowry	22	3	BGM: WR528
E haematantha	rosurrounu (ruusen) mizorrij	22	5	BGM: ES66
E haematantha	Lohivia amhlavensis Rausch	22	2	Diers 2008a
E haematantha	Lobivia amblayensis Rausch var. albispina Rausch	22	?	Diers 2008a
E huascha		22	10	BGM: BOS368 BOS374
E. huascha		22	?	Diers, 2008a
E. huascha subsp. robusta		22	16	BGM: BOS380
E. jajojana		44	?	Diers, 2008a
E. leucantha		22	5	BGM: BOS329
E. maximiliana		22	3	BGM: HJW189
E. maximiliana		22	?	Diers, 2008a
E. maximiliana	Lobivia corbula Britton & Rose	22	9	BGM: ES133
E. maximiliana	Lobivia intermedia Rausch	22	1	BGM: LK37
E. maximiliana	Lobivia miniatiflora F.Ritter	22	8	BGM: BOS676 (LPB)
E. mirabilis	, , , , , , , , , , , , , , , , , , ,	22	3	BGM: BOSx35
E. mirabilis		22	?	Diers, 2008a
E. obrepanda		22	?	Diers, 2008a
E. oxygona	E. eyriesii Pfeiff. & Otto	22	?	Sato, 1958; Katagiri, 1952; Diers, 2008a
E. oxygona	evriesii	22	2-10	Arakaki et al., 2007
E. oxygona	<i>E. multiplex</i> (Pfeiff.) Zucc. ex Pfeiff. & Otto	22	?	Sato, 1958
E. oxygona		22	?	Katagiri, 1952
E. oxygona	E. turbinata Pfeiff. & Otto	22	?	Diers, 2008a
E. pachanoi		22	3	BGM: BOSx78
E. pereziensis		22?	?	Diers, 2008a
E. pugionacantha		22	5	BGM: BOS566
<i>E. rhodotricha</i> K. Schum.	E. klingleriana Cárdenas	22	?	Diers, 2008a
E. rojasii		22	?	Diers, 2008a
E. rowlevi	Lobivia grandiflora Britton & Rose	22	?	Diers, 2008a
E. saltensis	0	2.2	5	BGM: BOSx50
E. saltensis	Lobivia nealeana Backeb.	22	?	Diers, 2008a
<i>E. spachiana</i> (Lem.) H. Friedrich & G. D. Rowley		22?	?	Diers, 2008a

TABLE 3. Continued.

				Origin of material studied or
Species	Infraspecific taxa and synonyms	2n	No. of counts	reference
F spachiana	x · ·	44	?	Katagiri 1952
E. spuchunu F. teaeleriana		22	. ?	Diers 2008a
E. tegetertana		22		Diens, 2008a
		22	2	DICIS, 2006a
E. thelegona		22	1	BGM: BOS208
E. thelegonoides		44	4	BGM: BOS543
E. tiegeliana		22/44	?	BGM: R323
E. tiegeliana		22	5	BGM: BOSx82
E. tiegeliana		22	14	BGM: WR84a
E. tubiflora		22	?	Katagiri, 1952; Sato, 1958; Diers, 2008a: Las Peñas et al., 2009
Other genera				2000a, 2as i enas et an, 2009
Acanthocalycium spiniflorum	Acanthocalycium violaceum (Werderm.) Backeb.	22	?	Diers, 2008a
Acanthocalvcium spiniflorum	· · · · ·	22	3	BGM: BOS401
Acanthocalycium thionanthum		22	6	BGM: ES9
Arthrocereus A. Berger, 2 taxa		22	?	Diers, 2008a
Browningia candelaris (Meyen)		22	2	Diers 2008a
Britton & Rose			·	20000
Caraus Mill 3 taxa		22	2	Sato 1058
Cereus Milli., 5 taxa		22	2	Diana 2008a
Cereus S taxa		22	2	Veterini 1052
Cereus 4 taxa		22	: 0	Katagiri, 1932
Cleistocactus baumannii	Cleistocactus s.str.	22	<i>!</i>	Ross, 1981
E A C Weber	Borzicactus aurivillus Britton & Rose	22	?	Katagiri, 1952; Sato, 1958
Cleistocactus samaipatanus	Bolivicereus samaipatanus Cárdenas	22	?	Diers, 2008a
(Cárdenas) D.R.Hunt	Claiate a gature a atr	22	5	DCM. DOS424
Cleistocactus Smaragaljiorus	Cleisiocacius S.Su.	22/44	2 10	Arelasia et al. 2007
Cleistocactus Lem., 5 taxa	Borzicacius, Loxaninocereus	22/44	2-10	Arakaki et al., 2007
Cleistocactus 3 taxa	Borzicactus	22	<i>!</i>	Baker, 2002
Cleistocactus 3 taxa	Cleistocactus s.str.	22/44	?	Diers, 2008a
Discocactus Pfeiff., 2 taxa		22	?	Diers, 2008a
Espostoa blossfeldiorum (Werderm) Buxb		22	2-10	Arakaki et al., 2007
Espostog langta		22/14/166	2 10	Arakaki et al. 2007
Esposiou iunuiu		22/44/00	2-10	Diana 2008a
Esposion Britton & Rose, 2 taxa		22/44 !	<u>/</u>	Diers, 2008a
Espostoa melanostele (Vaupel) Borg		22	4	Cultivated at BGNI, no voucher
subsp. nana (F.Ritter) G.J.Charles			2 10	
Espostoa senilis (F.Ritter) N.P.Taylor		22	2-10	Arakaki et al., 2007
<i>Espostoa</i> sp.		44	4	Cultivated at BGM, no voucher
Facheiroa ulei		22	?	Diers, 2008a
Gymnocalycium Pfeiff., 9 taxa		22	?	Diers, 2008a
Gymnocalycium 4 taxa		22	?	Katagiri, 1952
Gymnocalycium 30 taxa		22/44/66	?	Lambrou and Till, 1993
Gymnocalycium 2 taxa		22/44	?	Ross, 1981
Haageocereus Backeb., 11 taxa	17 taxa fide Arakaki et al., 2007	22/33/44	2-10	Arakaki et al., 2007
Lasiocereus fulvus		22	2-10	Arakaki et al., 2007
Lasiocereus runicola F Ritter		2.2	2-10	Arakaki et al. 2007
Matucana havnei		22	2-10	Arakaki et al. 2007
Matucana Britton & Rose 4 taxa		22	2 10	Diers 2008a
Micranthocaraus densiflarus		22	2	BGM: BOSy60
Micranthocereus densifiorus		22	2	Diara 2008h
Mile energideen		22	2 10	Auglasia: et al. 2007
		22	2-10	Arakaki et al., 2007
Oreocereus celsianus		44	12	BGM: BUS569
D R Hunt	Oreocereus. fossulatus var. gracilior (K Schum) Backeb	44	?	Diers, 2008b
Oroya borchersii (Boed.) Backeb.	(R.Senam,) Bucket.	22	?	Diers, 2008b
Praecereus euchlorus		22	?	Diers, 2008c
Pvamaeocereus bieblii var. kuehhasii		22	6	BGM: BOSx46
Rebutia K Schum 3 taxa	Avlostera	22/44	2	Diers 2008c
Rebutia atrovirens	Tytosteru	44	6	BGM: 175
Rebutia alomarisata Córdenas	Sulcorabutia manasasii (Cárdanas) Backab	22	2	Diars 2008c
Robutia minuscula	Robutia marsonari Wardarm & D. sanilis Dacheb	22	: 9	Diers 2008c
Pabutia nadaguansis Doucab	P managanathaa Pousoh	22:	: A	DCM, 1 550
<i>Rebuild paacayensis</i> Kausch	K. margareinae Kausch	22	4	DOM: LJJU DOM: DOS-72
Rebutta neocumingii	weingarna	22	1	DUM: BUSX/2
<i>Rebutia</i> 4 taxa	Rebutia, Sulcorebutia	22	?	Koss, 1981
Stetsonia coryne		22	5	BGM: BOSx57
Weberbauerocereus Backeb.		44/ca. 88	?	Diers, 2008c
3 taxa				
Weberbauerocereus weberbaueri		44	2-10	Arakaki et al., 2007
Weberbauerocereus 2 taxa		44/88	2-10	Arakaki et al., 2007

Fig. 2. Examples for convergent evolution in *Echinopsis*. Floral adaptation to hawkmoth pollination in *E. ancistrophora* (A, *Lobivia* clade) and *E. tubiflora* (B, *Echinopsis* s.str. clade) and columnar growth in *E. tarijensis* (C, *Helianthocereus* clade) and *E. atacamensis* subsp. *pasacana* (D, *E. atacamensis* clade).

Oroya, Pygmaeocereus, Rauhocereus, Samaipaticereus, Weberbauerocereus, and *Yungasocereus.* Alternatively, *Echinopsis* will need to be divided into smaller, more homogeneous units, requiring the resurrection of generic names and transfers of species epithets. We now briefly discuss the main clades found in this study.

Echinopsis s.s. is well supported (100% bootstrap support; the type species is *E. oxygona*) and homogeneous in growth

form. Its sister group consists of the likewise well-supported *E. atacamensis* clade and the genus *Harrisia* (100% and 97% bootstrap, respectively, Fig. 1A), refuting suggestions that *Harrisia* might be part of the Hylocereeae (A. Areces-Mallea, personal communication, cited in Anderson, 2001) or the Echinocereeae (Barthlott and Hunt, 1993). Of the ca. 20 species of *Harrisia*, we sampled *H. gracilis* from the Carribean and four species from central South America.

The *Cleistocactus* s.str. clade (Fig. 1A, 100% bootstrap) comprises the columnar cacti Espostoa guentheri (syn. Vatricania), Samaipaticereus, Weberbauerocereus, Yungasocereus, Cephalocleistocactus, and Cleistocactus. Species formerly placed in Borzicactus but transferred to Cleistocactus (Hunt, 2006) turn out not to belong there but instead to the Oreocereus clade (Fig. 1A), and future studies will have to investigate if other species transferred to Cleistocactus from Winterocereus (syn. Winteria and Hildewintera) and Bolivicereus also instead belong to Borzicactus. Most species in the Cleistocactus clade are adapted to pollination by bats (Espostoa, Samaipaticereus, and Yungasocereus) or hummingbirds (Cephalocleistocactus and *Cleistocactus*), and *Weberbauerocereus* species are visited, and apparently pollinated, by both bats and hummingbirds (Sahley, 1996). That Espostoa (Vatricania) guentheri is not grouping with E. lanata, the type species of Espostoa, fits with an anatomical study that found it to have "the greatest number of unusual features" among six species of Espostoa studied (Mauseth, 1999: p. 36). One of these unusual features, a twolayered hypodermis with clusters of columnar cells, resembles the hypodermis of Cleistocactus strausii and Weberbauerocereus albus, which are related to species that group with Espostoa (Vatricania) guentheri in our study.

Next closest is the *Reicheocactus* clade (Fig. 1A). The relatively early-diverging species *E. famatimensis* and *E. bonnieae* have long troubled Cactaceae taxonomists. First described as *Echinocactus famatimensis* (Spegazzini, 1921), the former was subsequently tranferred to *Rebutia* (Spegazzini, 1923) and *Lobivia* (Britton and Rose, 1919–1923), and in 1942 to the new genus *Reicheocactus* Backeb. (as *Reicheocactus pseudor-eicheanus*). In recent years, it was usually included in *Echinopsis* (Anderson, 2001; Hunt 2006; but see Kiesling et al., 2001, who returned it to *Lobivia*). *Echinopsis bonnieae* likewise has been moved between *Lobivia* (as *Lobivia bonnieae* Halda & Horácek, 1999) and *Echinopsis*.

Another well-supported group is the *Oreocereus* clade (Fig. 1A, 99% bootstrap), which includes the type species of *Oreocereus* plus the eight genera *Borzicactus* (here referred to *Cleistocactus*, according to Anderson, 2001 and Hunt, 2006), *Espostoa*, *Haageocereus*, *Matucana*, *Mila*, *Oroya*, *Pygmaeocereus*, and *Rauhocereus*, with a total of about 60 species (Hunt, 2006).

Next in the tree comes the *Denmoza* clade (Fig. 1B), which contains the monotypic *Denmoza rhodacantha*, *E. mirabilis* (syn. *Setiechinopsis*, monotypic as well), *E. leucantha*, and *Acanthocalycium*. *Acanthocalycium* was synonymized under *Echinopsis* s.l. by Hunt (2006), but was kept separate by Anderson (2001, 2005). All these taxa are endemic to northwestern Argentina, and their flowers are adapted to pollination by hummingbirds (*Denmoza*), bees (*Acanthocalycium*), or moths (*E. leucantha* and *E. mirabilis*, the latter unique in its short lifecycle, flowers closing before dawn, and autogamy; Kiesling and Ferrari, 2005).

The *Trichocereus* s.str. clade (Fig. 1B) is here represented by *Echinopsis pachanoi* and *E. lageniformis*, both columnar species characterized by few, blunt ribs, poor spination, and a moderate stem diameter (usually <20 cm). The type species of *Trichocereus, E. macrogona* [*Cereus macrogonus* Salm-Dyck; *Trichocereus macrogonus* (Salm-Dyck) Riccob.], is based on a cultivated specimen of unknown origin and appears related to *E. pachanoi* (Anderson, 2005; R. Kiesling, CONICET, Mendoza, Argentina, personal communication). The taxonomy is further complicated by *E. pachanoi*, a species long cultivated and hence widely distributed ("San Pedro cactus").

The Helianthocereus clade (Fig. 1B) consists of species of mostly columnar to rarely globular growth with flowers adapted to pollination by bees or hawkmoths. Friedrich (1974) and Friedrich and Glätzle (1983), in a study of seed morphology for which they sampled ca. 20 of the species from this clade, found that all had seeds with an obliquely placed oval hilum surrounded by flat testa cells. Next in the tree comes the E. bridgesii clade (89% bootstrap support), which consists of five species from central Bolivia and northern Argentina with globular to short-columnar growth and flowers suggesting either bee or moth pollination. The recently described Lobivia krahn-juckeri (Diers, 2009) may also belong here. A final group worth discussing is the Lobivia clade (Fig. 1B), with a well-supported core clade (93% bootstrap support) and an unresolved group of early-branching species. Typical "lobivioid" species are small, mostly globular plants with short diurnal flowers. However, the Lobivia clade also includes species with long (>20 cm) white flowers adapted to pollination by sphingids (Schlumpberger and Raguso, 2008; Schlumpberger et al., 2009; Fig. 2A). Examples for those are *E. ancistrophora*, *E. obrepanda*, and *E. rojasii*.

In sum, the molecular data presented here conflict in large parts with previous taxonomic classifications of *Echinopsis* and its relatives (Anderson, 2001, 2005; Hunt, 2006). Morphological characters other than those traditionally used will have to be found to circumscribe natural taxonomic groups in the Trichocereeae, but large morphological differences may be difficult to find since the entire Trichocereinae/Cereinae clade is only 7.5–6.5 Myr old (Arakaki et al., 2011).

Relative phylogenetic plasticity of growth habit and pollina*tion syndromes*—In most of the clades revealed by our molecular data, growth form (globular vs. columnar) is phylogenetically conserved. The *Helianthocereus* clade (Fig. 1B), however, comprises globular species (*E. crassicaulis, E. lobivioides*), barrel cacti (*E. formosa* subsp. *korethroides*), species with thin, creeping or upright columns (*E. huascha, E. candicans, E. thelegona*), and large, robust columnar cacti (*E. tarijensis, E. formosa* subsp. *formosa* BOS460; Fig. 1B, 2C, 2D).

Pollination modes are evolutionary less conserved. Switches from bee to hawkmoth pollination or vice versa appear to be especially common. Examples are found in the *Lobivia*, *Helianthocereus* and *Echinopsis* s.s. clades (Fig. 1A, B). The finding of closely related species having different pollinators fits with population-level variation between bee and sphingid pollination, and nocturnal or diurnal flower opening (Schlumpberger and Raguso, 2008; Schlumpberger et al., 2009). A review of inferred evolutionary shifts between pollinators in genera of Cactaceae more generally is provided in Schlumpberger (2012).

The role of polyploidy in the evolution of the Echinopsis clade—The 37 new chromosome counts reported here support the basic chromosome number of 2x = 22 inferred for Cactaceae (Remski, 1954; Pinkava et al., 1985). Tetraploidy is present in the Lobivia and Helianthocereus clades (Fig. 1A, B) and has also been reported from a few species not included in our tree, such as *E. spachiana* (likely part of our Helianthocereus clade) and *E. backebergii* subsp. wrightiana (Lobivia clade; Diers, 2008a; Table 3). Overall, the distribution of diploid and tetraploid (or higher) numbers on the phylogeny does not point to particularly frequent polyploidy events, compared for example with similarly sized clades in Aristolochia, Passiflora, Carex, and Helianthus (Ohi-toma et al., 2006; Hansen et al.,

2006; Hipp et al., 2007; Timme et al., 2007). It has been suggested that hybridization plays a major role in the evolution of Cactaceae (Rowley, 1994; Machado, 2008) and has also been hypothesized for *Echinopsis* (Friedrich, 1974; Font and Picca, 2001; Anderson, 2005) and related genera (Rowley, 1994). Observations in the field also suggest occasional hybridization, for example, between *E. atacamensis* subsp. *pasacana* × *E. huascha* subsp. *robusta*, *E. terscheckii* × *E. candicans*, *E. terscheckii* × *E. huascha*, and *E. ancistrophora* × *E. saltensis* (B. Schlumpberger, unpublished data). However, at least the first cross in this list involves homoploidy (BS, unpublished data), and the relative scarcity of tetraploidy in the phylogeny (Fig. 1) thus does not necessarily reflect a rarity of hybridization.

Conclusions—The chloroplast DNA phylogeny presented here for 144 species and subspecies representing all major groups of *Echinopsis* sensu lato as well as all genera of Trichocereeae demonstrates the polyphyly of this genus as currently circumscribed. The phylogeny further reveals much convergent evolution in flower traits that relate to pollination modes (see Fig. 2A, B) and less convergent evolution in growth forms (but see Fig. 2C, D). There is no conspicuous role of genome doubling in the evolution of *Echinopsis* sensu lato. A new generic classification of the Trichocereeae now requires finding morphological characters sufficiently conservative for distinguishing larger groups of species. Seed morphology and growth form, perhaps in combination, seem promising starting points.

LITERATURE CITED

- ANDERSON, E. F. 2001. The cactus family. Timber Press, Portland, Oregon, USA.
- ANDERSON, E. F. 2005. Das große Kakteen-Lexikon. Eugen Ulmer, Stuttgart, Germany.
- ARAKAKI, M., P. A. CHRISTIN, B. NYFFELER, A. LENDEL, U. EGGLI, R. M. OGBURN, E. SPRIGGS, M. J. MOORE, AND E. J. EDWARDS. 2011. Contemporaneous and recent radiations of the world's major succulent plant lineages. *Proceedings of the National Academy of Sciences*, USA 108: 8379–8384.
- ARAKAKI, M., D. E. SOLTIS, AND P. SPERANZA. 2007. New chromosome counts and evidence of polyploidy in *Haageocereus* and related genera in tribe Trichocereeae and other tribes of Cactaceae. *Brittonia* 59: 290–297.
- ASMUSSEN, C. B. 1999. Toward a chloroplast DNA phylogeny of the tribe Geonomeae (Palmeae). *In* A. Henderson, and F. Borchsenius [eds.], Evolution, variation, and classification of palms. *Memoirs of the New York Botanical Garden* 83: 121–129.
- BACKEBERG, C. 1958–1962. Die Cactaceae. Handbuch der Kakteenkunde, 6 vols. Fischer Verlag, Jena, Germany.
- BAKER, M. A. 2002. Chrosmosome numbers and their significance in some Opuntioideae and Cactoideae (Cactaceae) of mainland Ecuador and Peru. *Haseltonia* 9: 69–77.
- BARTHLOTT, W., AND D. R. HUNT. 1993. Cactacae. In K. Kubitzki, J. G. Rohwer, and V. Bittrich [eds.], The families and genera of vascular plants, vol. 2. Springer Verlag, Berlin, Germany.
- BRITTON, N. L., AND J. N. ROSE. 1919–1923. The Cactaceae, 4 vols. Carnegie Institution, Washington, D.C., USA.
- COTA, J. H., AND C. T. PHILBRICK. 1994. Number variation and polyploidy in the genus *Echinocereus* (Cactaceae). *American Journal of Botany* 81: 1054–1062.
- COTA, J. H., AND R. S. WALLACE. 1995. Karyotypic studies in the genus *Echinocereus* and its taxonomic implications. *Caryologia* 48: 105–122.
- DIERS, L. 2008a. Over chromosomen bij cactussen—ter herinnering aan Albert Buining (1). *Succulenta* 87: 83–92.
- DIERS, L. 2008b. Over chromosomen bij cactussen—ter herinnering aan Albert Buining (2). *Succulenta* 87: 127–140.

- DIERS, L. 2008c. Over chromosomen bij cactussen—ter herinnering aan Albert Buining (3). Succulenta 87: 180–187.
- DIERS, L. 2009. Lobivia krahn-juckeri (Cactaceae)—eine neue Art aus Bolivien. Kakteen und andere Sukkulenten 8: 215–223.
- FRIEDRICH, H. 1974. Zur Taxonomie und Phylogenie der Echinopsidinae (Trichocereinae). IOS-Bulletin 3: 79–93.
- FRIEDRICH, H., AND W. GLÄTZLE. 1983. Seed morphology as an aid to classifying the genus *Echinopsis* Zucc. *Bradleya* 1: 91–104.
- FONT, F., AND P. PICCA. 2001. Geographical distribution and state of conservation of the populations of *Lobivia walteri* Kiesling and *Trichocereus smrzianus* (Backeb.) Backeb. (Cactaceae) in the province of Salta, Argentina. *British Cactus and Succulent Journal* 19: 2–14.
- HALDA, J. J., AND L. HORÁCEK. 1999. New descriptions and combinations. Acta Musei Richnoviensis 6: 234–238.
- HAMILTON, M. B. 1999. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. *Molecular Ecology* 8: 521–525.
- HANSEN, A. K., L. E. GILBERT, B. B. SIMPSON, S. R. DOWNIE, A. C. CERVI, AND R. K. JANSEN. 2006. Phylogenetic relationships and chromosome number evolution in *Passiflora. Systematic Botany* 31: 138–150.
- HERNÁNDEZ-HERNÁNDEZ, T., H. M. HERNÁNDEZ, J. A. DE-NOVA, R. PUENTE, L. E. EGUIARTE, AND S. MAGALLÓN. 2011. Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). *American Journal of Botany* 98: 44–61.
- HERSHKOVITZ, M. A. E., AND A. ZIMMER. 1997. On the evolutionary origin of the cacti. *Taxon* 46: 217–232.
- HIPP, A. L., P. E. ROTHROCK, , A. A. REZNICEK, AND P. E. BERRY. 2007. Chromosome number changes associated with speciation in sedges: A phylogenetic study in *Carex* section Ovales (Cyperaceae) using AFLP data. *Aliso* 23: 193–203.
- HUNT, D. 1999. CITES Cactaceae checklist, 2nd ed. Royal Botanic Gardens, Kew, UK.
- HUNT, D. [ED.]. 2006. The new cactus lexicon, vols. I, II. DH Books, Milborne Port, UK.
- KATAGIRI, S. 1952. Studies on the chromosome number in certain Cactaceae species. *Japanese Journal of Breeding* 1: 233–236.
- KIESLING, R., D. J. FERGUSON, AND O. FERRARI. 2001. The first geophytic Lobivia (Cactaceae). Cactus and Succulent Journal 73: 179–186.
- KIESLING, R., AND O. E. FERRARI. 2005. 100 cactus argentinos. Editorial Albatros, Buenos Aires, Argentina.
- LÖYTYNOJA, A., AND N. GOLDMAN. 2005. An algorithm for progressive multiple alignment of sequences with insertions. *Proceedings of the National Academy of Sciences, USA* 102: 10557–10562.
- LAMBROU, M., AND W. TILL. 1993. Zur Karyologie der Gattung Gymnocalycium. Arbeitsgruppe Gymnocalycium 6: 85–88.
- LAS PEÑAS, M. L., J. D. URDAMPILLETA, G. BERNARDELLO, AND E. R. FORNI-MARTINS. 2009. Karyotypes, heterochromatin, and physical mapping of 18S-26S rDNA in Cactaceae. *Cytogenetic and Genome Research* 124: 72–80.
- MACHADO, M. C. 2008. What is the role of hybridization in the evolution of the Cactaceae? *Bradleya* 26: 1–18.
- MADDISON, D. R., AND W. P. MADDISON. 2003. MacClade 4.0. Sinauer, Sunderland, Massachusetts, USA.
- MAUSETH, J. D. 1999. Comparative anatomy of *Espostoa*, *Pseudoespostoa*, *Thrixanthocereus* and *Vatricania* (Cactaceae). *Bradleya* 17: 27–37.
- NEGRÓN-ORTIZ, V. 2007. Chromosome numbers, nuclear DNA content, and polyploidy in *Consolea* (Cactaceae), an endemic cactus of the Caribbean Islands. *American Journal of Botany* 94: 1360–1370.
- NYFFELER, R. 2002. Phylogentetic relationships in the cactus family (Cactaceae) based on evidence from *trnK/matK* and *trnL-trnF* sequences. *American Journal of Botany* 89: 312–326.
- NYFFELER, R., AND U. EGGLI. 2010. A farewell to dated ideas and concepts—Molecular phylogenetics and a revised suprageneric classification of the family Cactaceae. *Schumannia* 6: 109–149.
- OHI-TOMA, T., T. SUGAWARA, H. MURATA, S. WANKE, C. NEINHUIS, AND J. MURATA. 2006. Molecular phylogeny of Aristolochia sensu lato (Aristolochiaceae) based on sequences of *rbcL*, *matK*, and *phyA* genes, with special reference to differentiation of chromosome numbers. Systematic Botany 31: 481–492.

August 2012]

- ORTEGA-BAES, P., M. SARAVIA, S. SÜHRING, H. GODÍNEZ-ALVAREZ, AND M. ZAMAR. 2011. Reproductive biology of *Echinopsis terscheckii* (Cactaceae): The role of nocturnal and diurnal pollinators. *Plant Biology* 13 (supplement 1): 33–40.
- PINKAVA, D. J. 2002. On the evolution of the North America Opuntioideae. In D. Hunt and N. Taylor [eds], Studies in the Opuntioideae, 78–99. Royal Botanic Gardens, Kew, UK.
- PINKAVA, D. J., M. A. BAKER, B. D. PARFITT, M. W. MOHLENBROCK, AND R. D. WORTHINGTON. 1985. Chromosome numbers in some cacti of western North America V. Systematic Botany 10: 471–483.
- RAUSCH, W. 1985. Lobivia 85. Verlag Rudolf Herzig, Vienna, Austria.
- REMSKI, M. F. 1954. Cytological investigations in *Mammillaria* and some associated genera. *Botanical Gazette* 116: 163–171.
- RITZ, C. M., L. MARTINS, R. MECKLENBURG, V. GOREMYKIN, AND F. H. HELLWIG. 2007. The molecular phylogeny of *Rebutia* (Cactaceae) and its allies demonstrates the influence of paleogeography on the evolution of South American mountain cacti. *American Journal of Botany* 94: 1321–1332.
- Ross, R. 1981. Chromosome counts, cytology, and reproduction in the Cactaceae. *American Journal of Botany* 68: 463–470.
- RowLEY, G. D. 1994. Spontaneous bigeneric hybrids in Cactaceae. *Bradleya* 12: 2–7.
- SAHLEY, C. T. 1996. Bat and hummingbird pollination of an autotetraploid columnar cactus, Weberbauerocereus weberbaueri (Cactaceae). American Journal of Botany 83: 1329–1336.
- SATO, D. 1958. Chromosome of the Cactaceae. *Succulentarum Japonica* 3: 88–91.
- SCHLUMPBERGER, B. O. 2012. A survey on pollination modes in cacti and a potential key innovation. *In* S. Patiny [ed.], Evolution of plant–pollinator interactions, 301–319. Cambridge University Press, Cambridge, UK.

- SCHLUMPBERGER, B. O., AND E. I. BADANO. 2005. Diversity of floral visitors to *Echinopsis atacamensis* ssp. *pasacana* (Cactaceae). *Haseltonia* 11: 18–26.
- SCHLUMPBERGER, B. O., A. A. COCUCCI, M. MORÉ, A. N. SÉRSIC, AND R. A. RAGUSO. 2009. Extreme variation in floral characters and its consequences for pollinator attraction among populations of an Andean cactus. *Annals of Botany* 103: 1489–1500.
- SCHLUMPBERGER, B. O., AND R. A. RAGUSO. 2008. Geographic variation in floral scent of *Echinopsis ancistrophora* (Cactaceae): Evidence for constraints on hawkmoth attraction. *Oikos* 117: 801–814.
- SCHUMANN, K. 1899. Gesamtbeschreibung der Kakteen (Monographia Cactacearum). Neumann, Neudamm, Germany.
- SPEGAZZINI, C. 1921. Plantas nuevos o interesantes. Anales de la Sociedad Científica Argentina 92: 77–123.
- SPEGAZZINI, C. 1923. Breves notas cactológicas. Anales de la Sociedad Científica Argentina 96: 61–146.
- STAMATAKIS, A., P. HOOVER, AND J. ROUGEMONT. 2008. A rapid bootstrap algorithm for the RAXML webservers. Systematic Biology 57: 758–771.
- TABERLET, P., L. GIELLY, G. PAUTOU, AND J. BOUVET. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. *Plant Molecular Biology* 17: 1105–1109.
- TIMME, R. E., B. B. SIMPSON, AND C. R. LINDER. 2007. High-resolution phylogeny for *Helianthus* (Asteraceae) using the 18S-26S ribosomal DNA external transcribed spacer. *American Journal of Botany* 94: 1837–1852.
- WALTER, H. 2010. Floral biology of *Echinopsis chiloensis* ssp. *chiloensis* (Cactaceae): Evidence for a mixed pollination syndrome. *Flora* 205: 757–763.