Storm-driven maritime dispersal of prickly pear cacti
(\textit{Opuntia} species)

Lucas C. Majure, Gary N. Ervin, and Pat Fitzpatrick

Department of Biological Sciences and GeoResources Institute
Mississippi State University, Mississippi State, MS 39762-9652
E-mail: gervin@biology.msstate.edu

INTRODUCTION

The majority of \textit{Opuntia} species in the eastern U.S. are found in the Atlantic and Gulf Coastal Plains. These species tend to occur in sandy soils that provide for more xeric environments. This presumably lessens interspecific competition, an important factor for the slow-growing cacti. Several species of \textit{Opuntia} (e.g., \textit{O. humifusa} (Raf.) Raf., \textit{O. puella} (Haw.) Haw., and \textit{O. stricta} (Haw.) Haw.) are found in coastal habitats from North Carolina to Texas1-6. These species are particularly abundant on the barrier islands along the Gulf Coast in Mississippi, Alabama, and Florida.

\textit{Opuntia} are widely known to be dispersed vegetatively by disarticulation of cladodes from the parent plant4,8. For example, \textit{Opuntia puella} has easily disarticulated cladodes that are armed with retrorsely barbed spines that pierce fur, skin, and other surfaces9 (Fig. 1). Accordingly, they can be dispersed by animals passing through populations of these plants9. The vegetative propagules root readily and form new plants in suitable habitats (Fig. 2). Such vegetative propagation can be one of the main means of reproduction for some \textit{Opuntia}3,3,4,8,8.

Because of the ease with which vegetative fragments of \textit{Opuntia} regenerate, it is likely that \\textit{Opuntia} disperses by storms in coastal areas function in long-distance maritime transport and establishment of new populations. The present work aimed to document one potential example of such dispersal associated with a major hurricane along the US Gulf Coast.

PLANT SURVEYS

Initial plant surveys were conducted July 2004 at Greenwood Island in Jackson County, Mississippi. Greenwood Island is a peninsula adjacent to Bayou Cassotte, just west of the Grand Bay National Estuarine Research Reserve and Grand Bay National Wildlife Refuge (Figs. 3 & 4).

The periphery of Greenwood Island grades into salt marsh, which is the most common vegetation cover in the surveyed area. A portion of the interior of Greenwood Island presently is covered by spits from dredging operations and mainland expansion from the commercial occupants of the eastern half of the peninsula. The periphery is surrounded by an earthen levee approximately 4.3m (14ft) in height.

No species of \textit{Opuntia} were seen growing in the surveyed area during 2004. The dominant vegetation on the higher areas (oyster shell middens) consisted of \textit{Quercus virginiana}, \textit{Salsolago serpentinorum}, \textit{Baccharis halimifolia}, \textit{Caespitose Bluestem}, \textit{Anisophleps arborea}, and \textit{Lasiurus frutescens}. Species more common to the peripheral salt marsh were \textit{Juncoanus roemarianus}, \textit{Salsolago serpentinorum}, \textit{Borrichia frutescens}, and \textit{Juncus sagittatus}.

On January 14, 2006, 4.5 months after hurricane Katrina, a second survey was conducted of the same area. Most of the vegetation had been compressed or removed by the force of the storm, and much of the previously surveyed area was occupied by bare soil. However, an abundance of disarticulated \textit{Opuntia} cladodes were observed, which appeared to have been deposited on the site from hurricane Katrina. Both \textit{O. humifusa} and \textit{O. stricta} were observed. Generally, these plants consisted of individual pads, but occasionally joined cladodes or whole plants were noted.

METHODOLOGICAL DATA

Hurricane Katrina was an unusually large major hurricane, resulting in a prolonged period of damaging winds and a 17-foot storm surge on the Greenwood Island area on 29 August 2005. The sustained winds peaked at 88 mph (40ms-1) with gusts up to 105 mph (47ms-1). According to an anemometer at Ingalls Shipyard, winds gusts over 100 mph (45ms-1) began at 6AM, associated with a possible outer eyewall. The inner eyewall made landfall between 9AM and 10AM as well as the maximum sustained winds. Time series of the wind data were obtained from the Hurricane Research Division, and are shown in Fig. 4.

To assess the water elevation evolution, the Advanced CIRCulation (ADCIRC) hydrodynamic model8 was used to simulate Katrina’s storm surge, and a time series was computed (Fig. 4). The model underestimates the water height, but correctly shows the surge peaking between 10AM and 11AM. In addition, wave heights of 5-10 feet (1.5m to 3.0m) at the islands, and about 2-3 feet (1m) at the levee systems, were superimposed on the surge.

The wind direction (and roughly the water current as well) started out from the east-southeast during the night, then shifted to the southwest in the afternoon. This suggests either the wind or the surge transported the broken cactus from the islands to this mainland region. Either mechanism would have provided the 200 N of force necessary to break or dislodge a typical cladode of \textit{O. humifusa} (approx. 0.01cm2 surface area, with winds of 60 mph [27ms-1] or greater). This would translate to the equivalent of a 20kg mass applied to the cladode, which is more than sufficient for disarticulation of some of the most fibrous \textit{Opuntia} species (e.g., \textit{O. ficus-indica}3,8). Future trajectory calculations will be performed to test this hypothesis.

CONCLUSIONS

Maximum wind speeds and the forces they created on the barrier islands were of more than adequate strength to have dislodged \textit{Opuntia} cladodes. In fact, entire plants were observed to have been dislodged from the soil and deposited elsewhere on the islands (Fig. 5).

Wind direction data also suggest a high likelihood that the \textit{Opuntia} colonizing the Greenwood Island peninsula could have originated on Petit Bois Island 16km to the southeast, where \textit{Opuntia} were known to exist prior to Hurricane Katrina (Fig. 4). These results lend support to the hypothesis that storms and maritime transport of \textit{Opuntia} could contribute to long-distance dispersal of these plants – as well as long-distance dispersal of invertebrate herbivores, such as Cactoblasts that may inhabit cladodes at the time of transport. However, it presently is unknown whether Cactoblasts larvae could survive such a journey; such information would be valuable in planned modeling efforts for oceanic trajectory mapping.

LITERATURE CITED